La función lineal  y=mx+by=mx+b en realidad representa un gráfico de una línea recta que tiene un punto de intersección con el eje Y Y vertical.

m m representa la pendiente.
Cuando m m Positivo: la pendiente es positiva: la recta es ascendente.
Cuando m m Negativo: la pendiente es negativa: la recta es descendente.
Cuando m=0 m = 0   La pendiente es igual a 0 0 La recta es paralela al eje X X

b b  representa el punto de intersección de la recta con el eje Y Y .
Si \( b=0 \) Entonces la recta pasará por el origen de las coordenadas, es decir, el punto (0,0) \left(0,0\right)

¿Cómo sabemos si un punto está en la función?

Si se nos da un punto, podemos colocarlo en la ecuación de la recta y ver si la ecuación se cumple.
Si se nos da solo una parte del punto: X X o Y Y  , colocaremos lo dado en la ecuación de la forma correcta y encontraremos la segunda parte del punto.


¿Cómo graficamos la función?

Si queremos un dibujo preciso, construiremos una tabla de valores de 3 3 Valores de menos.
Reemplazamos cada vez X X y obtenemos el valor de Y Y .
Consideramos la pendiente de la función creciente decreciente o igual a0 0 y la graficamos.


¿Qué hacemos si no se da la pendiente?

Para calcular la pendiente podemos utilizar una fórmula que hallarla a partir de dos puntos dados entre los que pasa la recta:

m=(Y2Y1)(X2X1) m=\frac{\left(Y2-Y1\right)}{(X2-X1)}


Un ejercicio sobre la función lineal

Se nos da una función lineal y=3x+4 y=3x+4

Se nos pide que interpretemos los valores 3 3 y 4 4 y se traza la gráfica de la función.

Primero, parece que m=3 m=3 , es decir, 3 3 representa la pendiente de la recta (o de la función).

b=4 b=4  Es decir, la línea corta el eje vertical. Y Y  sobre 4 4

Para trazar el gráfico, todo lo que necesitamos es 2 2 puntos.
Reemplazamos y obtenemos: 

1.a - Un ejercicio sobre la función lineal

Ahora marcaremos los dos puntos en el sistema de coordenadas y los conectaremos.
Si observamos el gráfico, podemos probar que el gráfico interseca el eje Y Y en el valor de 4 4 .


Si te interesa este artículo también te pueden interesar los siguientes artículos:

Función lineal

Hallar ecuación lineal

La función lineal y=mx+b

Positividad y negatividad de una función lineal

Representación de fenómenos usando funciones lineales

En el blog de Tutorela encontrarás una variedad de artículos sobre matemáticas.