Solve the following equation:
Solve the following equation:
\( (x+2)^2=(2x+3)^2 \)
Solve the following equation:
\( (x-4)^2+3x^2=-16x+12 \)
Find X
\( 7x+1+(2x+3)^2=(4x+2)^2 \)
Solve the following equation:
\( (x+3)^2=2x+5 \)
Solve the equation
\( 2x^2-2x=(x+1)^2 \)
Solve the following equation:
We will solve the equation by expanding and simplifying both sides:
Step 1: Expand both sides of the equation:
Left side:
Right side:
Step 2: Set the expanded forms equal to each other:
Step 3: Rearrange to form a standard quadratic equation:
Subtract from both sides:
Step 4: Rearrange to get:
Step 5: Solve using the quadratic formula:
Using , , :
Step 6: Calculate the solutions:
Verify in the original equation to assure correctness. Hence, both solutions are valid.
Therefore, the solutions are and , which matches choice 3.
Solve the following equation:
To solve the given equation, follow these steps:
Thus, .
.
This gives .
Bring all terms to one side: .
Combine and simplify the terms: .
It becomes .
.
The solution is , therefore .
In conclusion, the solution to the equation is .
Find X
To solve the equation , we follow these steps:
Step 1: Expand the squares.
The left side: .
The right side: .
Step 2: Substitute back into the original equation and simplify:
.
Combine like terms:
.
Step 3: Move all terms to one side:
.
Which simplifies to:
.
Step 4: Divide by -3 to simplify:
.
Step 5: Use the quadratic formula:
, where , , .
Calculate the discriminant:
.
Calculate the roots:
.
Therefore, the solution to the problem is .
Solve the following equation:
To solve the equation , we proceed as follows:
Step 1: Expand the left side. Using the identity , we find:
.
Step 2: Set the equation to zero by moving all terms to one side:
Subtract from both sides:
This simplifies to:
.
Step 3: Solve the quadratic equation . Notice this can be factored as:
.
Step 4: Solve for by setting the factor equal to zero:
.
Thus, .
Therefore, the solution to the equation is .
Solve the equation
The given equation is:
Step 1: Expand the right-hand side.
Step 2: Write the full equation with the expanded form.
Step 3: Bring all terms to one side of the equation to set it to zero.
Step 4: Simplify the equation.
Step 5: Identify coefficients for the quadratic formula.
Here, , , .
Step 6: Apply the quadratic formula.
Therefore, the solutions are and .
These solutions correspond to choice (4): Answers a + b
Answers a + b