Examples with solutions for Converting Fractions to Percentages and Vice Versa: Worded problems

Exercise #1

In a box there are 28 balls, 14 \frac{1}{4} of which are orange.

How many orange balls are there in the box in total?

Video Solution

Step-by-Step Solution

To solve this problem, we'll determine the number of orange balls by calculating the fraction of the total number of balls:

  • Step 1: Identify the total number of balls, 28 28 .
  • Step 2: Note the fraction representing the orange balls, 14 \frac{1}{4} .
  • Step 3: Apply the formula to find the number of orange balls:
    Number of orange balls =28×14 = 28 \times \frac{1}{4}

Now, let's perform the calculation:
28×14=28÷4=7 28 \times \frac{1}{4} = 28 \div 4 = 7

Therefore, the number of orange balls in the box is 7 7 .

Answer

7

Exercise #2

If there are 18 balls in a box of which 23 \frac{2}{3} are white:

How many white balls are there in the box in total?

Video Solution

Step-by-Step Solution

To solve this problem, we will determine the number of white balls in the box using a fraction of the total number of balls.

We are given the total number of balls in the box as 18, and we know that 23 \frac{2}{3} of these balls are white. To find the number of white balls, we follow these steps:

  • Step 1: Identify the total quantity, which is 18 balls.
  • Step 2: Use the given fraction 23 \frac{2}{3} to find the number of white balls.
  • Step 3: Multiply the total number of balls by the fraction of white balls: 18×23 18 \times \frac{2}{3} .

Perform the calculation:

18×23=18×0.6667=12 18 \times \frac{2}{3} = 18 \times 0.6667 = 12

Alternatively, calculate directly using fractions:

18×23=18×23=363=12 18 \times \frac{2}{3} = \frac{18 \times 2}{3} = \frac{36}{3} = 12

Thus, the total number of white balls in the box is 12.

Therefore, the correct answer is choice 12.

Answer

12

Exercise #3

During recess 15 \frac{1}{5} of the students play catch, 20% play soccer and the remaining 15 students watch a movie.

How many students are there in total?

Step-by-Step Solution

To solve this problem, we will find a common equation to account for all students:

  • Activity: Playing catch, Fraction: 15x\frac{1}{5}x
  • Activity: Playing soccer, Fraction: 20% of xx which is 15x\frac{1}{5}x
  • Activity: Watching a movie, Number: 1515 students

The total number of students involved is xx. Thus, the setup for the equation is:

15x+15x+15=x\frac{1}{5}x + \frac{1}{5}x + 15 = x

Simplify and solve for xx:

25x+15=x\frac{2}{5}x + 15 = x

Subtract 25x\frac{2}{5}x from both sides:

15=x25x15 = x - \frac{2}{5}x

15=35x15 = \frac{3}{5}x

To isolate xx, multiply both sides by 53\frac{5}{3}:

x=15×53x = 15 \times \frac{5}{3}

x=25x = 25

Therefore, the total number of students is 25 students.

Answer

25 students