Length Units: Arrange the numbers in Ascending Order

Examples with solutions for Length Units: Arrange the numbers in Ascending Order

Exercise #1

Order from smallest to largest:

2 2 cm, 0.4 0.4 dm, 30 30 mm, 0.01 0.01 m

Step-by-Step Solution

To order the given lengths from smallest to largest, we first convert all measurements to a common unit, such as centimeters:

  • 22 cm is already in centimeters.
  • 0.40.4 dm: Using the conversion 11 dm = 1010 cm, 0.40.4 dm = 0.4×10=40.4 \times 10 = 4 cm.
  • 3030 mm: Using the conversion 11 mm = 0.10.1 cm, 3030 mm = 30×0.1=330 \times 0.1 = 3 cm.
  • 0.010.01 m: Using the conversion 11 m = 100100 cm, 0.010.01 m = 0.01×100=10.01 \times 100 = 1 cm.

Now, we can arrange the lengths in ascending order by their converted measurements:

  • 0.010.01 m = 11 cm
  • 22 cm = 22 cm
  • 3030 mm = 33 cm
  • 0.40.4 dm = 44 cm

Therefore, the correct order from smallest to largest is:

0.01 0.01 m
2 2 cm
30 30 mm
0.4 0.4 dm

Answer

0.01 0.01 m
2 2 cm
30 30 mm
0.4 0.4 dm

Exercise #2

Order from smallest to largest:

45 45 mm, 0.3 0.3 dm, 5 5 cm, 0.007 0.007 m

Step-by-Step Solution

To compare the measurements, convert all units to meters:

  • 45 45 mm = 0.045 0.045 m.

  • 0.3 0.3 dm = 0.03 0.03 m.

  • 5 5 cm = 0.05 0.05 m.

  • The smallest is 0.007 0.007 m itself.

Order from smallest to largest:

0.007 0.007 m
0.03 0.03 m
0.045 0.045 m
0.05 0.05 m

Answer

0.007 0.007 m
0.3 0.3 dm
45 45 mm
5 5 cm

Exercise #3

Order from smallest to largest:

0.2 0.2 m, 35 35 mm, 15 15 cm, 0.05 0.05 dm

Step-by-Step Solution

To order the given lengths from smallest to largest, we need to convert each measurement into meters:

  • 35 mm 35 \text{ mm} : Convert using 35 mm×0.001=0.035 m 35 \text{ mm} \times 0.001 = 0.035 \text{ m} .
  • 15 cm 15 \text{ cm} : Convert using 15 cm×0.01=0.15 m 15 \text{ cm} \times 0.01 = 0.15 \text{ m} .
  • 0.05 dm 0.05 \text{ dm} : Convert using 0.05 dm×0.1=0.005 m 0.05 \text{ dm} \times 0.1 = 0.005 \text{ m} .
  • 0.2 m 0.2 \text{ m} is already in meters.

After conversion, we have:

  • 0.035 m 0.035 \text{ m} from 35 mm
  • 0.15 m 0.15 \text{ m} from 15 cm
  • 0.005 m 0.005 \text{ m} from 0.05 dm
  • 0.2 m 0.2 \text{ m} .

Next, arrange these values from smallest to largest:

  • 0.005 m 0.005 \text{ m} from 0.05 dm 0.05 \text{ dm}
  • 0.035 m 0.035 \text{ m} from 35 mm 35 \text{ mm}
  • 0.15 m 0.15 \text{ m} from 15 cm 15 \text{ cm}
  • 0.2 m 0.2 \text{ m} from 0.2 m 0.2 \text{ m} .

The ordering from smallest to largest is 0.05 dm 0.05 \text{ dm} , 35 mm 35 \text{ mm} , 15 cm 15 \text{ cm} , 0.2 m 0.2 \text{ m} .

Therefore, the correct order is choice 1:

0.05 0.05 dm
35 35 mm
15 15 cm
0.2 0.2 m

Answer

0.05 0.05 dm
35 35 mm
15 15 cm
0.2 0.2 m

Exercise #4

Order from smallest to largest:

60 60 mm, 8 8 cm, 0.1 0.1 m, 0.09 0.09 dm

Step-by-Step Solution

To solve this problem, we'll convert each measurement to millimeters and order them accordingly.

Step-by-step solution:

  • Convert each measurement to millimeters:
    • 60 60 mm is already in millimeters.
    • 8 8 cm: Since 1 1 cm equals 10 10 mm, 8 8 cm is 8×10=80 8 \times 10 = 80 mm.
    • 0.1 0.1 m: Since 1 1 m equals 1000 1000 mm, 0.1 0.1 m is 0.1×1000=100 0.1 \times 1000 = 100 mm.
    • 0.09 0.09 dm: Since 1 1 dm equals 100 100 mm and 0.09 0.09 dm equals 0.09×100=9 0.09 \times 100 = 9 mm.
  • List the lengths in millimeters: 9 9 mm (from 0.09 0.09 dm), 60 60 mm, 80 80 mm (from 8 8 cm), 100 100 mm (from 0.1 0.1 m).
  • Order the original measurements from smallest to largest:
    • 0.09 0.09 dm
    • 60 60 mm
    • 8 8 cm
    • 0.1 0.1 m

    Therefore, the solution to the problem is:

    0.09 0.09 dm
    60 60 mm
    8 8 cm
    0.1 0.1 m

Answer

0.09 0.09 dm
60 60 mm
8 8 cm
0.1 0.1 m

Exercise #5

Order from smallest to largest:

0.06 0.06 m, 9 9 cm, 70 70 mm, 0.08 0.08 dm

Step-by-Step Solution

To solve this problem, we'll convert all the lengths to meters so that they can be directly compared:

  • Convert 0.060.06 m to meters.
    Since it's already in meters, it remains 0.060.06 m.

  • Convert 99 cm to meters.
    Since 11 cm equals 0.010.01 m, 99 cm equals 9×0.01=0.099 \times 0.01 = 0.09 m.

  • Convert 7070 mm to meters.
    Since 11 mm equals 0.0010.001 m, 7070 mm equals 70×0.001=0.0770 \times 0.001 = 0.07 m.

  • Convert 0.080.08 dm to meters.
    Since 11 dm equals 0.10.1 m, 0.080.08 dm equals 0.08×0.1=0.0080.08 \times 0.1 = 0.008 m.

Now, we can list them in ascending order of meters:

1. 0.080.08 dm = 0.0080.008 m
2. 0.060.06 m
3. 7070 mm = 0.070.07 m
4. 99 cm = 0.090.09 m

Therefore, ordered from smallest to largest, the measurements are:

0.080.08 dm
0.060.06 m
7070 mm
99 cm

Answer

0.08 0.08 dm
0.06 0.06 m
70 70 mm
9 9 cm

Exercise #6

Order from smallest to largest:

11 11 cm, 0.1 0.1 dm, 90 90 mm, 0.011 0.011 m

Step-by-Step Solution

To solve this problem, we'll convert each given length to centimeters:

  • The length 1111 cm is already in centimeters.
  • The length 0.10.1 dm; knowing 11 dm = 1010 cm, gives 0.1×10=10.1 \times 10 = 1 cm.
  • The length 9090 mm; knowing 11 cm = 1010 mm, gives 90/10=990 / 10 = 9 cm.
  • The length 0.0110.011 m; knowing 11 m = 100100 cm, gives 0.011×100=1.10.011 \times 100 = 1.1 cm.

Now, we list the lengths in centimeters:

  1. 0.10.1 dm = 11 cm
  2. 0.0110.011 m = 1.11.1 cm
  3. 9090 mm = 99 cm
  4. 1111 cm = 1111 cm

The correct order from smallest to largest is:

  1. 0.10.1 dm
  2. 0.0110.011 m
  3. 9090 mm
  4. 1111 cm

Therefore, the order from smallest to largest is: 0.1 0.1 dm, 0.011 0.011 m, 90 90 mm, 11 11 cm.

Comparing with the options provided, the correct choice is option 2.

Answer

0.1 0.1 dm
0.011 0.011 m
90 90 mm
11 11 cm

Exercise #7

Order from smallest to largest:

50 50 mm, 0.2 0.2 dm, 4 4 cm, 0.005 0.005 m

Step-by-Step Solution

To solve this problem, we need to convert each measurement to meters and then order them:

  • Convert 50 mm to meters:
    Since 1 meter = 1000 millimeters, we have:
    50 mm1000=0.05 \frac{50 \text{ mm}}{1000} = 0.05 meters
  • Convert 0.2 dm to meters:
    Since 1 meter = 10 decimeters, we have:
    0.2 dm10=0.02 \frac{0.2 \text{ dm}}{10} = 0.02 meters
  • Convert 4 cm to meters:
    Since 1 meter = 100 centimeters, we have:
    4 cm100=0.04 \frac{4 \text{ cm}}{100} = 0.04 meters
  • Convert 0.005 m to meters:
    It is already given in meters:
    0.005 0.005 meters

Now, let's compare the values in meters:
- 0.005 meters
- 0.02 meters (from 0.2 dm)
- 0.04 meters (from 4 cm)
- 0.05 meters (from 50 mm)

Order them from smallest to largest:
1. 0.005 0.005 meters
2. 0.02 0.02 meters
3. 0.04 0.04 meters
4. 0.05 0.05 meters

Therefore, the order from smallest to largest in their original units is:
1. 0.005 0.005 m
2. 0.2 0.2 dm
3. 4 4 cm
4. 50 50 mm

Therefore, the correct ordering is choice 4 which matches:
0.005 0.005 m, 0.2 0.2 dm, 4 4 cm, 50 50 mm.

Answer

0.005 0.005 m
0.2 0.2 dm
4 4 cm
50 50 mm

Exercise #8

Order from smallest to largest:

30 30 mm, 0.09 0.09 dm, 6 6 cm, 0.04 0.04 m

Step-by-Step Solution

To solve this problem, we will convert each measurement to millimeters so that we can easily compare their sizes:

  • Convert 0.09dm0.09 \, \text{dm} to mm: 0.09dm=0.09×100mm=9mm0.09 \, \text{dm} = 0.09 \times 100 \, \text{mm} = 9 \, \text{mm}
  • Convert 6cm6 \, \text{cm} to mm: 6cm=6×10mm=60mm6 \, \text{cm} = 6 \times 10 \, \text{mm} = 60 \, \text{mm}
  • Convert 0.04m0.04 \, \text{m} to mm: 0.04m=0.04×1000mm=40mm0.04 \, \text{m} = 0.04 \times 1000 \, \text{mm} = 40 \, \text{mm}

Now, compare the lengths in millimeters:

  • 9mm9 \, \text{mm} (originally 0.09dm0.09 \, \text{dm})
  • 30mm30 \, \text{mm} (originally 30mm30 \, \text{mm})
  • 40mm40 \, \text{mm} (originally 0.04m0.04 \, \text{m})
  • 60mm60 \, \text{mm} (originally 6cm6 \, \text{cm})

The order from smallest to largest is:

0.09dm0.09 \, \text{dm}, 30mm30 \, \text{mm}, 0.04m0.04 \, \text{m}, 6cm6 \, \text{cm}

Answer

0.09 0.09 dm
30 30 mm
0.04 0.04 m
6 6 cm

Exercise #9

Order from smallest to largest:

0.03 0.03 m, 5 5 cm, 25 25 mm, 0.001 0.001 dm

Step-by-Step Solution

To solve this problem, we need to convert all the given lengths to a common unit of measurement, here we'll use meters.

First, let's convert each measurement to meters:

  • 0.030.03 m is already in meters.
  • 55 cm: Since 1 cm=0.01 m1 \text{ cm} = 0.01 \text{ m}, then 5 cm=5×0.01 m=0.05 m5 \text{ cm} = 5 \times 0.01 \text{ m} = 0.05 \text{ m}.
  • 2525 mm: Since 1 mm=0.001 m1 \text{ mm} = 0.001 \text{ m}, then 25 mm=25×0.001 m=0.025 m25 \text{ mm} = 25 \times 0.001 \text{ m} = 0.025 \text{ m}.
  • 0.0010.001 dm: Since 1 dm=0.1 m1 \text{ dm} = 0.1 \text{ m}, then 0.001 dm=0.001×0.1 m=0.0001 m0.001 \text{ dm} = 0.001 \times 0.1 \text{ m} = 0.0001 \text{ m}.

Next, we compare the values we have in meters:

  • 0.00010.0001 m (from 0.0010.001 dm)
  • 0.0250.025 m (from 2525 mm)
  • 0.030.03 m
  • 0.050.05 m (from 55 cm)

Thus, ordering from smallest to largest is: 0.0010.001 dm, 2525 mm, 0.030.03 m, 55 cm.

Therefore, the correct order from smallest to largest is:

0.001 0.001 dm
25 25 mm
0.03 0.03 m
5 5 cm

Answer

0.001 0.001 dm
25 25 mm
0.03 0.03 m
5 5 cm

Exercise #10

Order from smallest to largest:

0.04 0.04 m, 8 8 cm, 50 50 mm, 0.2 0.2 dm

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Convert each length to meters for a fair comparison.
  • Step 2: Order the lengths from smallest to largest.

Now, let's work through each step:

Step 1: Convert all measurements to meters.

  • 0.04m 0.04 \, \text{m} is already in meters.
  • 8cm=8100m=0.08m 8 \, \text{cm} = \frac{8}{100} \, \text{m} = 0.08 \, \text{m} .
  • 50mm=501000m=0.05m 50 \, \text{mm} = \frac{50}{1000} \, \text{m} = 0.05 \, \text{m} .
  • 0.2dm=0.210m=0.02m 0.2 \, \text{dm} = \frac{0.2}{10} \, \text{m} = 0.02 \, \text{m} .

Step 2: Order the lengths from smallest to largest based on the meter conversions:

  • 0.02m 0.02 \, \text{m} (which is 0.2dm 0.2 \, \text{dm} )
  • 0.04m 0.04 \, \text{m}
  • 0.05m 0.05 \, \text{m} (which is 50mm 50 \, \text{mm} )
  • 0.08m 0.08 \, \text{m} (which is 8cm 8 \, \text{cm} )

Therefore, the order from smallest to largest is:

0.2dm<0.04m<50mm<8cm 0.2 \, \text{dm} < 0.04 \, \text{m} < 50 \, \text{mm} < 8 \, \text{cm} .

Answer

0.2 0.2 dm
0.04 0.04 m
50 50 mm
8 8 cm

Exercise #11

Order from smallest to largest:

55 55 mm, 0.5 0.5 cm, 0.007 0.007 m, 0.09 0.09 dm

Step-by-Step Solution

Let's begin by converting each measurement to millimeters:

  • 55 55 mm is already in millimeters, so it stays at 55 55 mm.
  • 0.5 0.5 cm = 0.5×10 0.5 \times 10 mm = 5 5 mm.
  • 0.007 0.007 m = 0.007×1000 0.007 \times 1000 mm = 7 7 mm.
  • 0.09 0.09 dm = 0.09×100 0.09 \times 100 mm = 9 9 mm.

Now, comparing these converted lengths in millimeters:

  • The smallest value is 5 5 mm which corresponds to 0.5 0.5 cm.
  • The next smallest is 7 7 mm which corresponds to 0.007 0.007 m.
  • The third is 9 9 mm which corresponds to 0.09 0.09 dm.
  • The largest is 55 55 mm which corresponds directly to 55 55 mm.

Therefore, in ascending order, the lengths are:

0.5 0.5 cm
0.007 0.007 m
0.09 0.09 dm
55 55 mm

Answer

0.5 0.5 cm
0.007 0.007 m
0.09 0.09 dm
55 55 mm