Calculate (1/3)³: Evaluating the Cube of a Simple Fraction

Insert the corresponding expression:

(13)3= \left(\frac{1}{3}\right)^3=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Insert the corresponding expression:

(13)3= \left(\frac{1}{3}\right)^3=

2

Step-by-step solution

To solve the expression (13)3 \left(\frac{1}{3}\right)^3 , we need to apply the rule for exponents of a fraction, which states:

(ab)n=anbn \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}

Using this property, we can rewrite the fraction with its exponent as follows:

(13)3=1333 \left(\frac{1}{3}\right)^3 = \frac{1^3}{3^3}

Now, calculate the powers of the numerator and the denominator separately:

  • 13=1 1^3 = 1

  • 33=27 3^3 = 27

Thus, putting it all together, we have:

1333=127 \frac{1^3}{3^3} = \frac{1}{27}

This shows that raising both the numerator and the denominator of a fraction to a power involves calculating the power of each part separately and then constructing a new fraction.

The solution to the question is: 127 \frac{1}{27}

3

Final Answer

127 \frac{1}{27}

Practice Quiz

Test your knowledge with interactive questions

\( 112^0=\text{?} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations