What is the least common multiple (LCM) of the numbers 3 and 7?
We have hundreds of course questions with personalized recommendations + Account 100% premium
What is the least common multiple (LCM) of the numbers 3 and 7?
To find the least common multiple (LCM) of the numbers 3 and 7, we will list the multiples of each number and find the smallest multiple they have in common.
Multiples of 3:
Multiples of 7:
The smallest common multiple is .
21
Without calculating, determine whether the quotient in the division exercise is less than 1 or not:
\( 5:6= \)
Since 3 and 7 are both prime numbers, they share no common factors except 1. When two numbers are relatively prime (GCD = 1), their LCM always equals their product!
Yes! Use the formula: . Since GCD(3,7) = 1, we get .
That's okay! Any common multiple will be a multiple of the LCM. For example, 42 and 63 are also common multiples of 3 and 7, but 21 is the smallest.
Never! The LCM must be divisible by each original number, so it's always greater than or equal to the largest number you started with.
Divide 21 by each original number: and . Both give whole numbers with no remainders!
Get unlimited access to all 18 Simple Fractions questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime