Solve (3/280)^(-7): Negative Exponent with Complex Fraction

Question

Insert the corresponding expression:

(35×8×7)7= \left(\frac{3}{5\times8\times7}\right)^{-7}=

Video Solution

Solution Steps

00:00 Simplify the following problem
00:03 According to the exponent laws, a fraction raised to the negative power (-N)
00:07 is equal to the reciprocal fraction raised to the opposite exponent (N)
00:11 We will apply this formula to our exercise
00:14 We will convert to a reciprocal number and raise it to the opposite exponent
00:20 This is the solution

Step-by-Step Solution

The goal is to simplify the expression (35×8×7)7\left(\frac{3}{5 \times 8 \times 7}\right)^{-7} by converting the negative exponent to a positive one.

Step 1: Apply the negative exponent rule:
The expression (35×8×7)7\left(\frac{3}{5 \times 8 \times 7}\right)^{-7} implies we take the reciprocal of the fraction and change the exponent to positive:
(35×8×7)7=(5×8×73)7\left(\frac{3}{5 \times 8 \times 7}\right)^{-7} = \left(\frac{5 \times 8 \times 7}{3}\right)^7.

Step 2: Simplify the expression:
By applying the negative exponent rule correctly, the expression is simplified correctly to (5×8×73)7\left(\frac{5 \times 8 \times 7}{3}\right)^7.

Thus, the expression (35×8×7)7\left(\frac{3}{5 \times 8 \times 7}\right)^{-7} simplifies to:

(5×8×73)7 \left(\frac{5 \times 8 \times 7}{3}\right)^7 .

Answer

(5×8×73)7 \left(\frac{5\times8\times7}{3}\right)^7