Examples with solutions for Bisector: Generate a random angle

Exercise #1

Calculate angle α \alpha given that it is a bisector.

ααα606060AAAaaa

Video Solution

Step-by-Step Solution

Since an angle bisector divides the angle into two equal angles, and we are given that one angle is equal to 60 degrees. Angle α \alpha is also equal to 60 degrees

Answer

60

Exercise #2

BD is a bisector.

What is the size of angle ABC?

656565AAABBBCCCDDD

Video Solution

Step-by-Step Solution

Since we are given that the value of angle DBC is 65 degrees, and we know that the angle bisector divides angle ABC into two equal angles, we can calculate the value of angle ABC:

65+65=130 65+65=130

Answer

130

Exercise #3

Calculate the size of angle α \alpha given that it is a bisector.αααaaa

Video Solution

Answer

45

Exercise #4

ABD=90 ∢\text{ABD}=90

CB bisects ABD \sphericalangle\text{ABD} .

CBD=α \sphericalangle\text{CBD}=\alpha

Calculate the size of ABC ∢ABC .

AAABBBDDDCCCα

Video Solution

Answer

45

Exercise #5

ABD=15 ∢\text{ABD}=15

BD bisects the angle.

Calculate the size of ABC ∢\text{ABC} .

AAABBBCCCDDD15

Video Solution

Answer

30

Exercise #6

BO bisects ABD ∢ABD .

ABD=85 ∢\text{ABD}=85

Calculate the size of

ABO. \sphericalangle ABO\text{.} 85°85°85°AAACCCBBBOOODDD

Video Solution

Answer

42.5

Exercise #7

Given the following data:

DBC=90° ∢DBC=90°

BE intersects the angle DBA ∢\text{DBA}

Determine the value of α \alpha

AAABBBCCCDDDEEEα

Video Solution

Answer

45

Exercise #8

BE bisects FBD ∢\text{FBD} .

FBE=25 ∢\text{FBE}=25

Calculate the size of EBD ∢\text{EBD} .

AAACCCBBBFFFEEEDDD25

Video Solution

Answer

25

Exercise #9

BD bisects ABC ∢\text{ABC} .

EBC=α ∢EBC=\alpha

DBE=30 ∢DBE=30

Calculate the size of ABD ∢\text{ABD} .

αααAAABBBCCCDDDEEE30

Video Solution

Answer

α+30 \alpha+30

Exercise #10

AFB=60 ∢\text{AFB}=60

AFE=120 ∢\text{AFE}=120

EFD=80 ∢EFD=80

FC bisects DFB ∢DFB .

Calculate the size of angle DFC ∢\text{DFC}

EEEBBBAAACCCDDD6012080F

Video Solution

Answer

50

Exercise #11

OC bisects DOB ∢\text{DOB} .

KOD=2α ∢KOD=2\alpha

DOC=α ∢DOC=\alpha

KOB=68 ∢KOB=68

Calculate the size of angle DOC ∢\text{DOC} (a a ).

αααOOOKKKDDDCCCBBB68

Video Solution

Answer

17

Exercise #12

BD bisects ABC ∢\text{ABC} .

BE bisectsABD ∢\text{ABD} .

ABC=50 ∢\text{ABC}=50

Calculate the size of ABE ∢\text{ABE} .

AAABBBCCCDDDEEE50°

Video Solution

Answer

12.5

Exercise #13

ABC=β ∢\text{ABC}=\beta

EBC=α ∢EBC=\alpha

BD bisects ABE ∢ABE .

Calculate ABD ∢\text{ABD} .

αααβββAAABBBCCCDDDEEE

Video Solution

Answer

βα2 \frac{\beta-\alpha}{2}