Examples with solutions for Area of a Trapezoid: Express using

Exercise #1

Express the area of the trapezoid by X

X+14X+14X+143X+73X+73X+72X2X2X

Video Solution

Step-by-Step Solution

To express the area of the trapezoid in terms of X X , follow these steps:

  • Step 1: Identify the given values for the trapezoid's dimensions. The top base b1 b_1 is X+14 X + 14 , the bottom base b2 b_2 is 3X+7 3X + 7 , and the height h h is 2X 2X .
  • Step 2: Use the trapezoid area formula A=12×(b1+b2)×h A = \frac{1}{2} \times (b_1 + b_2) \times h .
  • Step 3: Compute the sum of the bases: (X+14)+(3X+7)=X+14+3X+7=4X+21(X + 14) + (3X + 7) = X + 14 + 3X + 7 = 4X + 21.
  • Step 4: Calculate the area using the formula: A=12×(4X+21)×(2X) A = \frac{1}{2} \times (4X + 21) \times (2X) .
  • Step 5: Simplify: A=12×(4X+21)×2X=(4X+21)×X A = \frac{1}{2} \times (4X + 21) \times 2X = (4X + 21) \times X .
  • Step 6: Simplify further by distributing: A=4X2+21X A = 4X^2 + 21X .

Thus, the area of the trapezoid expressed in terms of X X is 4X2+21X 4X^2 + 21X .

Answer

4x2+21x 4x^2+21x

Exercise #2

Shown below is the trapezoid ABCD.

Given in cm:

AB = 5

DC = 3

Height = h

Calculate the area of the trapezoid.

555333hhhAAABBBCCCDDD

Video Solution

Step-by-Step Solution

Let's calculate the area of trapezoid ABCDABCD:

The formula for the area of a trapezoid is:

Area=12×(Base1+Base2)×Height \text{Area} = \frac{1}{2} \times (\text{Base}_1 + \text{Base}_2) \times \text{Height}

In this trapezoid, we have:

  • Base1=AB=5\text{Base}_1 = AB = 5 cm
  • Base2=DC=3\text{Base}_2 = DC = 3 cm
  • Height=h\text{Height} = h

Substituting these into the formula, we get:

Area=12×(5+3)×h \text{Area} = \frac{1}{2} \times (5 + 3) \times h

Simplify the calculation:

Area=12×8×h=4h \text{Area} = \frac{1}{2} \times 8 \times h = 4h

Thus, the area of the trapezoid is 4h4h square centimeters.

Answer

4h 4h

Exercise #3

Calculate the area of the trapezoid in the diagram.

2X2X2X3Y3Y3YXXX

Video Solution

Step-by-Step Solution

To determine the area of the trapezoid, we will use the formula for the area of a trapezoid:

A=12×(Base1+Base2)×Height A = \frac{1}{2} \times (\text{Base}_1 + \text{Base}_2) \times \text{Height}

From the problem, the two bases are 2X2X and 3Y3Y. The height is XX.

Substituting into the formula, we have:

A=12×(2X+3Y)×X A = \frac{1}{2} \times (2X + 3Y) \times X

Simplifying the expression inside the parenthesis gives:

A=12×(2X+3Y)×X=12×(2X×X+3Y×X) A = \frac{1}{2} \times (2X + 3Y) \times X = \frac{1}{2} \times (2X \times X + 3Y \times X)

Distributing XX through the terms inside the parenthesis gives:

A=12×(2X2+3XY) A = \frac{1}{2} \times (2X^2 + 3XY)

Continuing the simplification:

A=12×2X2+12×3XY A = \frac{1}{2} \times 2X^2 + \frac{1}{2} \times 3XY

Which simplifies to:

A=X2+1.5XY A = X^2 + 1.5XY

Therefore, the area of the trapezoid is X2+1.5XY X^2 + 1.5XY cm².

Through comparison, this expression matches the given choice: x2+1.5xy x^2+1.5xy cm², which corresponds to choice 33.

Thus, the correct area of the trapezoid is x2+1.5xy x^2 + 1.5xy cm².

Answer

x2+1.5xy x^2+1.5xy cm².