The cube shown below has a base area equal to 36 cm².
Is it possible to calculate the height of the cube? If so, what is it?
We have hundreds of course questions with personalized recommendations + Account 100% premium
The cube shown below has a base area equal to 36 cm².
Is it possible to calculate the height of the cube? If so, what is it?
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The basic property of a cube is that all of its three dimensions (length, width, and height) are equal. We know the base area of this cube is given as 36 cm².
Step 2: Using the formula for the area of a square, we have , where is the side length of the base.
Solving for , we find:
Step 3: Since all sides of a cube are equal, the height of the cube is also .
Therefore, the height of the cube is .
A cube has a total of 14 edges.
By definition, a cube has all edges equal! The height, width, and length are all the same measurement. This is what makes it different from other rectangular shapes.
Since the base is a square, use the formula . Take the square root of the area: cm.
No! Length measurements are always positive. When you calculate , only consider the positive result: 6 cm, not -6 cm.
You'd still take the square root! For example, if base area = 50 cm², then cm. The height would be the same value.
Absolutely! Unlike other 3D shapes, cubes have a special property: knowing any one dimension tells you all the others. The base area is enough information.
Get unlimited access to all 18 Cuboids questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime