A hexagon has sides measuring cm long. What is the area of the hexagon?
We have hundreds of course questions with personalized recommendations + Account 100% premium
A hexagon has sides measuring cm long. What is the area of the hexagon?
The formula to find the area of a regular hexagon with side length is given by:
For a hexagon with side length , substitute into the formula:
Calculate :
Substitute back:
This simplifies to:
259.81 cm²
A hexagon has sides measuring \( 8 \)cm long. What is the area of the hexagon?
That would give you the perimeter (60 cm), not the area! Area measures the space inside the shape in square units. You need the special hexagon formula: .
The comes from the geometry of regular hexagons. It relates to the height of equilateral triangles that make up the hexagon. You can use for calculations.
Yes! A regular hexagon splits into 6 equilateral triangles. Find the area of one triangle using , then multiply by 6. This gives the same result!
Think: "3 square-root-3 over 2, times s-squared". The 3 represents the 6 triangles (6÷2=3), and comes from triangle height. Practice with different side lengths!
You can use as an approximation. So the formula becomes: .
Get unlimited access to all 18 Regular polygons - Advanced questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime