Calculate the Price of Hydrogen in a Gas Mixture

Question

A mixture contains 3 gases:

Helium constitutes 3% of the mixture and costs 7per100grams.<br><br>Hydrogenconstitutes877 per 100 grams.<br><br>Hydrogen constitutes 87% of the mixture.<br><br>Oxygen constitutes 10% of the mixture and costs 11 per 100 grams.

If the mixture sells for $X per 100 grams, then what is the price of hydrogen?

Video Solution

Step-by-Step Solution

To solve this problem, we'll apply a weighted average approach to determine the cost of hydrogen in the mixture:

  • Step 1: Calculate the contribution of helium per 100 grams. Cost of helium per 100 grams=3%×7=0.21 \text{Cost of helium per 100 grams} = 3\% \times 7 = 0.21 dollars.
  • Step 2: Calculate the contribution of oxygen per 100 grams. Cost of oxygen per 100 grams=10%×11=1.1 \text{Cost of oxygen per 100 grams} = 10\% \times 11 = 1.1 dollars.
  • Step 3: Write the equation for the total cost per 100 grams. X=0.21+Cost of hydrogen per 100 grams+1.1 X = 0.21 + \text{Cost of hydrogen per 100 grams} + 1.1
  • Step 4: Simplify the equation to solve for the cost of hydrogen per 100 grams. Cost of hydrogen per 100 grams=X(0.21+1.1) \text{Cost of hydrogen per 100 grams} = X - (0.21 + 1.1) Cost of hydrogen per 100 grams=X1.31 \text{Cost of hydrogen per 100 grams} = X - 1.31
  • Step 5: Express the cost of hydrogen based on its percentage in the mixture. Since hydrogen makes up 87%, 87100×Cost of hydrogen per 100 grams=X1.31 \frac{87}{100} \times \text{Cost of hydrogen per 100 grams} = X - 1.31
  • Step 6: Solve for the cost of hydrogen. Cost of hydrogen=10087×(X1.31)1.15X1.51 \text{Cost of hydrogen} = \frac{100}{87} \times (X - 1.31) \approx 1.15X - 1.51

Therefore, the price of hydrogen is 1.15X1.51 1.15X - 1.51 dollars per 100 grams.

Answer

1.15x1.51 1.15x-1.51 $