Compare (√40-√10)²: Determine if Greater or Less Than 30

Question

Fill in the corresponding sign

(4010)2?30 (\sqrt{40}-\sqrt{10})^2?30

Video Solution

Solution Steps

00:00 Complete the appropriate sign
00:03 We'll use the shortened multiplication formulas to open the parentheses
00:19 The square root of a number squared equals the number itself
00:35 Root times root equals the root of the product
00:55 Collect like terms
01:06 Calculate the square root of 400
01:14 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Simplify the expression (4010)2(\sqrt{40} - \sqrt{10})^2
  • Step 2: Calculate the square root values for 40\sqrt{40} and 10\sqrt{10}
  • Step 3: Compare the simplified value to 30

Now, let's work through each step:
Step 1: Simplify (4010)2(\sqrt{40} - \sqrt{10})^2 using the square of a difference formula:

(4010)2=(40)224010+(10)2(\sqrt{40} - \sqrt{10})^2 = (\sqrt{40})^2 - 2 \cdot \sqrt{40} \cdot \sqrt{10} + (\sqrt{10})^2

(40)2=40(\sqrt{40})^2 = 40 and (10)2=10(\sqrt{10})^2 = 10, so:

(4010)2=4024010+10(\sqrt{40} - \sqrt{10})^2 = 40 - 2 \cdot \sqrt{40} \cdot \sqrt{10} + 10

Step 2: Calculate each term:
406.324\sqrt{40} \approx 6.324 and 103.162\sqrt{10} \approx 3.162.

The expression becomes:

4026.3243.162+10=50401040 - 2 \cdot 6.324 \cdot 3.162 + 10 = 50 - 40 \approx 10

Step 3: Compare 1010 to 3030. Since 10<3010 < 30, the correct relation is:

Therefore, the solution to the problem is the comparison (4010)2<30(\sqrt{40} - \sqrt{10})^2 < 30.

Thus, the sign is <\textbf{<}.

Answer

<