XA+2BX=X(2X+3)2−C
Calculate the values of A, B, and C so that the equation is satisfied.
To solve this problem, we will simplify both sides of the given equation:
Given equation:
XA+2BX=X(2X+3)2−C.
First, expand the quadratic expression:
(2X+3)2=(2X+3)(2X+3)=4X2+6X+6X+9=4X2+12X+9.
Substitute this back into the equation:
XA+2BX=X4X2+12X+9−C.
Simplify the right-hand side:
X4X2+12X+9=4X+X12X+X9=4X+12+X9.
The equation now becomes:
XA+2BX=4X+12+X9−C.
For the equation to hold true for all values of X, equate corresponding terms:
- XA=X9⇒A=9.
- 2BX=4X⇒B=8.
- For constant terms: 12−C=0⇒C=12.
Therefore, the values are A=9, B=8, and C=12.
The correct answer is: A=9,B=8,C=12.
A=9,B=8,C=12