Evaluate (1/9)^7: Solving Powers of Fraction Expression

Insert the corresponding expression:

1797= \frac{1^7}{9^7}=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:07 Let's make this problem simpler.
00:11 Remember the exponent rule: a fraction to the power of N is the same as both the top and bottom to the power of N.
00:20 We'll use this idea but in reverse for our example.
00:24 Let's apply this formula and solve it together!
00:27 And there we have our answer.

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Insert the corresponding expression:

1797= \frac{1^7}{9^7}=

2

Step-by-step solution

To solve this problem, we'll apply the formula for the power of a quotient:

  • Step 1: Identify the expression 1797 \frac{1^7}{9^7} .
  • Step 2: Recognize that anbn=(ab)n \frac{a^n}{b^n} = \left( \frac{a}{b} \right)^n applies here. The numerator is a7=17 a^7 = 1^7 , and the denominator is b7=97 b^7 = 9^7 .
  • Step 3: Apply the formula: 1797=(19)7 \frac{1^7}{9^7} = \left( \frac{1}{9} \right)^7 .

In step 2, we used the property that allows us to rewrite 1797 \frac{1^7}{9^7} as (19)7 \left( \frac{1}{9} \right)^7 , which is more convenient for interpretation or further calculations.

Therefore, the expression 1797 \frac{1^7}{9^7} can be rewritten as (19)7 \left( \frac{1}{9} \right)^7 .

3

Final Answer

(19)7 \left(\frac{1}{9}\right)^7

Practice Quiz

Test your knowledge with interactive questions

\( 112^0=\text{?} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations