Expand (2x-y)(4-3x): Solving Binomial Multiplication Step-by-Step

(2xy)(43x)= (2x-y)(4-3x)=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Solve
00:03 Open parentheses properly, multiply each factor by each factor
00:27 Calculate the multiplications
00:55 Positive times negative always equals negative
01:10 Arrange the expression
01:17 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

(2xy)(43x)= (2x-y)(4-3x)=

2

Step-by-step solution

Let's simplify the given expression by factoring the parentheses using the expanded distributive law:

(a+b)(c+d)=ac+ad+bc+bd (\textcolor{red}{a}+\textcolor{blue}{b})(c+d)=\textcolor{red}{a}c+\textcolor{red}{a}d+\textcolor{blue}{b}c+\textcolor{blue}{b}d Note that that the sign before the term is an inseparable part of it.

We will also apply the laws of sign multiplication and thus we can present any term in parentheses to make things simpler.

(2xy)(43x)(2x+(y))(4+(3x)) (2x-y)(4-3x)\\ (\textcolor{red}{2x}+\textcolor{blue}{(-y)})(4+(-3x))\\ Let's start then by opening the parentheses:

(2x+(y))(4+(3x))2x4+2x(3x)+(y)4+(y)(3x)8x6x24y+3xy (\textcolor{red}{2x}+\textcolor{blue}{(-y)})(4+(-3x))\\ \textcolor{red}{2x}\cdot 4+\textcolor{red}{2x}\cdot(-3x)+\textcolor{blue}{(-y)}\cdot 4+\textcolor{blue}{(-y)} \cdot(-3x)\\ 8x-6x^2-4y+3xy In the operations above we used the sign multiplication laws, and the exponent law for multiplying terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n}

In the next step we will combine similar terms. We will define similar terms as terms in which the variables, in this case, x and y, have identical powers (in the absence of one of the unknowns from the expression, we will relate to its power as zero power, since raising any number to the power of zero will yield the result 1).

We will arrange the expression from the highest power to the lowest from left to right (we will relate to the free term as the power of zero),

Note that in the expression we received in the last step there are four different terms, since there is not even one pair of terms in which the unknowns (the variables) have the same power, so the expression we already received, is the final and most simplified expression.

We will settle for arranging it again from the highest power to the lowest from left to right:
8x6x24y+3xy6x2+3xy+8x4y \textcolor{purple}{ 8x}\textcolor{green}{-6x^2}-4y\textcolor{orange}{+3xy}\\ \textcolor{green}{-6x^2}\textcolor{orange}{+3xy}\textcolor{purple}{ +8x}-4y\\ We highlighted the different terms using colors, and as already emphasized before, we made sure that the sign before the term is correct.

We thus received that the correct answer is answer D.

3

Final Answer

6x2+3xy+8x4y -6x^2+3xy +8x-4y

Practice Quiz

Test your knowledge with interactive questions

\( (3+20)\times(12+4)= \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Algebraic Technique questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations