Given the expression of the quadratic function
Finding the symmetry point of the function
f(x)=−4x2+8x+3
To find the symmetry point of the quadratic function f(x)=−4x2+8x+3, follow these steps:
- Step 1: Identify key parameters
The function is of the form f(x)=ax2+bx+c, with a=−4, b=8, and c=3.
- Step 2: Find the x-coordinate of the vertex
Use the formula for the x-coordinate of the vertex: x=−2ab.
Substitute the values for b and a:
x=−2×−48=−−88=1.
- Step 3: Find the y-coordinate by substituting back into f(x)
Calculate f(1):
f(1)=−4(1)2+8(1)+3=−4+8+3=7.
- Step 4: State the symmetry point
The symmetry point, or vertex, of the function is (1,7).
Therefore, the symmetry point of the quadratic function f(x)=−4x2+8x+3 is (1,7).