Rectangle Congruence: Comparing Two Rectangles with Areas A=24 and A=20

Are the rectangles congruent?

A=20A=20A=20A=24A=24A=24

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Are the rectangles congruent?

A=20A=20A=20A=24A=24A=24

2

Step-by-step solution

To determine whether the rectangles are congruent, we need to understand what congruence means for geometric figures.

Definition of Congruent Rectangles:
Two rectangles are congruent if and only if they have exactly the same dimensions. This means they must have the same length and the same width. Congruent figures can be placed on top of each other through rigid motions (translation, rotation, reflection) and match perfectly.

Key Observation:
An important property of congruent figures is that they must have equal areas. While equal areas don't guarantee congruence for rectangles, different areas guarantee that the rectangles are NOT congruent.

Analysis of the Given Rectangles:
From the diagram, we can see:

  • Rectangle 1 has area A=24 A = 24
  • Rectangle 2 has area A=20 A = 20

Conclusion:
Since the two rectangles have different areas (2420 24 \neq 20 ), they cannot possibly have the same dimensions. Therefore, the rectangles are not congruent.

The answer is: No

3

Final Answer

No

Practice Quiz

Test your knowledge with interactive questions

Are the rectangles below congruent?

222333444333

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Rectangles questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations