Similar Triangles: Analyzing the Relationship Between Triangle EDB and ABC

Similar Triangles with Proportional Side Ratios

Triangle EDB is similar to triangle ABC.

Choose the correct answer.

AAABBBCCCDDDEEE

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Choose the appropriate answer
00:03 The triangles are similar according to the given
00:08 According to the similarity ratio, we have pairs of corresponding sides
00:11 We'll go from each point to the next point to find the side
00:27 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Triangle EDB is similar to triangle ABC.

Choose the correct answer.

AAABBBCCCDDDEEE

2

Step-by-step solution

The key property of similar triangles is that the ratios of the lengths of their corresponding sides are equal. For triangles EDB and ABC:

  • Triangle EDB is similar to triangle ABC, meaning:
  • Corresponding sides are proportional: ABBE=BCDB=ACED \frac{AB}{BE} = \frac{BC}{DB} = \frac{AC}{ED}

Therefore, the correct relationship among the sides, using the concept of similar triangles, is:

BCDB=ABBE=ACED \frac{BC}{DB} = \frac{AB}{BE} = \frac{AC}{ED}

This matches choice 3.

Thus, the correct answer to the problem is BCDB=ABBE=ACED \frac{BC}{DB}=\frac{AB}{BE}=\frac{AC}{ED} .

3

Final Answer

BCDB=ABBE=ACED \frac{BC}{DB}=\frac{AB}{BE}=\frac{AC}{ED}

Key Points to Remember

Essential concepts to master this topic
  • Similar Triangles: Corresponding sides are proportional with equal ratios
  • Matching Vertices: EDB ~ ABC means E↔A, D↔B, B↔C
  • Check Ratios: All three ratios must be equal: BCDB=ABBE=ACED \frac{BC}{DB} = \frac{AB}{BE} = \frac{AC}{ED}

Common Mistakes

Avoid these frequent errors
  • Incorrect vertex correspondence in similar triangles
    Don't randomly match vertices like E↔B or D↔A = wrong proportions! This leads to incorrect ratios that don't represent the true similarity relationship. Always match corresponding vertices based on the similarity statement order: EDB ~ ABC means E↔A, D↔B, B↔C.

Practice Quiz

Test your knowledge with interactive questions

Is the similarity ratio between the three triangles equal to one?

FAQ

Everything you need to know about this question

How do I know which vertices correspond to each other?

+

The order matters in the similarity statement! EDB ~ ABC means the first letter corresponds: E↔A, then D↔B, then B↔C. Always match vertices in the same position.

Why are there so many different ratio expressions in the answer choices?

+

Each choice represents different vertex pairings. Only one pairing correctly matches the similarity statement EDB ~ ABC. The others mix up corresponding sides incorrectly.

Can I write the ratios in a different order?

+

Yes! You can rearrange the equal ratios like ABBE=BCDB=ACED \frac{AB}{BE} = \frac{BC}{DB} = \frac{AC}{ED} , but the individual ratios must maintain correct corresponding sides.

What if the triangles look different in size or position?

+

Similar triangles can be different sizes and orientations! Focus on the vertex labels and similarity statement, not how they appear visually in the diagram.

How can I verify my answer is correct?

+

Check that each ratio uses corresponding sides from the correct triangles. For EDB ~ ABC: sides from triangle EDB go in numerator/denominator with sides from triangle ABC in the same positions.

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Similar Triangles and Polygons questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations