Simplify (11×12)^30 ÷ (11×12)^30: Power Division Problem

Exponent Division with Same Bases

Insert the corresponding expression:

(11×12)30(11×12)30= \frac{\left(11\times12\right)^{30}}{\left(11\times12\right)^{30}}=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Simply
00:02 We'll use the formula for dividing powers
00:04 Any number (A) to the power of (N) divided by the same base (A) to the power of (M)
00:07 equals the number (A) to the power of the difference of exponents (M-N)
00:10 We'll use this formula in our exercise
00:12 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Insert the corresponding expression:

(11×12)30(11×12)30= \frac{\left(11\times12\right)^{30}}{\left(11\times12\right)^{30}}=

2

Step-by-step solution

Let's solve the given mathematical expression step by step using the rules of exponents.


  • We start with the expression: (11×12)30(11×12)30 \frac{\left(11\times12\right)^{30}}{\left(11\times12\right)^{30}}.

  • According to the rules of exponents, specifically the quotient rule, which states that when you divide powers with the same base, you subtract their exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

  • Applying this rule to the expression, since the base 11×1211 \times 12 is the same in both the numerator and the denominator, we subtract the exponents:

    • The numerator is (11×12)30\left(11\times12\right)^{30} and the denominator is (11×12)30\left(11\times12\right)^{30}.

    • Therefore, (11×12)30(11×12)30=(11×12)3030\frac{\left(11\times12\right)^{30}}{\left(11\times12\right)^{30}} = \left(11\times12\right)^{30-30}.

  • Simplifying further, we have:

    • (11×12)3030=(11×12)0\left(11\times12\right)^{30-30} = \left(11\times12\right)^{0}.

    • Any non-zero number raised to the power of 0 is 1. However, here the expression is left in the form of an exponent as requested.


The solution to the question is: (11×12)3030 \left(11\times12\right)^{30-30}

3

Final Answer

(11×12)3030 \left(11\times12\right)^{30-30}

Key Points to Remember

Essential concepts to master this topic
  • Quotient Rule: When dividing same bases, subtract the exponents
  • Technique: aman=amn \frac{a^m}{a^n} = a^{m-n} means 30 - 30
  • Check: Any non-zero number to the zero power equals 1 ✓

Common Mistakes

Avoid these frequent errors
  • Adding or multiplying exponents instead of subtracting
    Don't add exponents (30 + 30) or multiply them (30 × 30) when dividing = completely wrong operation! This confuses division with multiplication or addition rules. Always subtract exponents when dividing powers with the same base.

Practice Quiz

Test your knowledge with interactive questions

\( (3\times4\times5)^4= \)

FAQ

Everything you need to know about this question

Why do we subtract exponents when dividing?

+

Think of it this way: a3a2=a×a×aa×a \frac{a^3}{a^2} = \frac{a \times a \times a}{a \times a} . Two a's cancel out, leaving just one a, which is a1=a32 a^1 = a^{3-2} !

What happens when the exponents are the same?

+

When exponents are equal, like (11×12)30(11×12)30 \frac{(11 \times 12)^{30}}{(11 \times 12)^{30}} , you get (11×12)3030=(11×12)0=1 (11 \times 12)^{30-30} = (11 \times 12)^0 = 1 . Any number divided by itself equals 1!

Do I need to calculate 11 × 12 first?

+

No! Keep it as (11×12) (11 \times 12) since it's the same base in both numerator and denominator. The actual value doesn't matter for applying the quotient rule.

What if the bases were different numbers?

+

The quotient rule only works when bases are identical. If you had 11301230 \frac{11^{30}}{12^{30}} , you couldn't subtract exponents because the bases (11 and 12) are different.

Is the answer always 1 when exponents are equal?

+

Yes! When you divide any non-zero number by itself, you always get 1. So anan=ann=a0=1 \frac{a^n}{a^n} = a^{n-n} = a^0 = 1 for any non-zero base a.

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations