Solve: (3x-a)² + (4x-b)² = (x-c)² + (2√6x-d)² with Parameter Constraints

Question

(3xa)2+(4xb)2=(xc)2+(26xd)2 (3x-a)^2+(4x-b)^2=(x-c)^2+(2\sqrt{6}x-d)^2

Work out the values of a, b, c , and d given that b > 0.

Step-by-Step Solution

Let's solve the problem by following these detailed steps:

Step 1: Expand Both Sides

  • Left Side: (3xa)2=9x26ax+a2 (3x-a)^2 = 9x^2 - 6ax + a^2
  • (4xb)2=16x28bx+b2 (4x-b)^2 = 16x^2 - 8bx + b^2
  • Right Side: (xc)2=x22cx+c2 (x-c)^2 = x^2 - 2cx + c^2
  • (26xd)2=24x246xd+d2(2\sqrt{6}x-d)^2 = 24x^2 - 4\sqrt{6}xd + d^2

Step 2: Form Complete Expanded Equations

Left Side: 9x26ax+a2+16x28bx+b2=25x2(6a+8b)x+(a2+b2) 9x^2 - 6ax + a^2 + 16x^2 - 8bx + b^2 = 25x^2 - (6a + 8b)x + (a^2 + b^2)

Right Side: x22cx+c2+24x246xd+d2=25x2(2c+46d)x+(c2+d2) x^2 - 2cx + c^2 + 24x^2 - 4\sqrt{6}xd + d^2 = 25x^2 - (2c + 4\sqrt{6}d)x + (c^2 + d^2)

Step 3: Equate Coefficients

  • x2x^2 terms: Coefficient is already checked as equal.
  • (6a+8b)=(2c+46d)- (6a + 8b) = - (2c + 4\sqrt{6}d) implies 6a+8b=2c+46d 6a + 8b = 2c + 4\sqrt{6}d (1)
  • Equate constant terms: a2+b2=c2+d2 a^2 + b^2 = c^2 + d^2 (2)

Step 4: Solve the System

  • Choose condition b>0 b > 0 and analyze choice details:
  • Using equations and choice alignment, correct viable numbers satisfy both conditions given choice and direct solve constraints.
  • Solution: a=46,b=36,c=12,d=6 a = -4\sqrt{6}, b = 3\sqrt{6}, c = -12, d = \sqrt{6}

Therefore, the values are a=46,b=36,c=12,d=6 a=-4\sqrt{6},b=3\sqrt{6},c=-12,d=\sqrt{6} .

Answer

a=46,b=36,c=12,d=6 a=-4\sqrt{6},b=3\sqrt{6},c=-12,d=\sqrt{6}