Solve f(x) = x²: Finding the Missing Value When f(x) = 16

Question

Complete:

The missing value of the function point:

f(x)=x2 f(x)=x^2

f(?)=16 f(?)=16

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Set up the equation from the function definition.
  • Step 2: Solve the equation by taking the square root of both sides.
  • Step 3: Identify all possible values for x x .
  • Step 4: Compare with the given answer choices.

Now, let's work through each step:

Step 1: We start with the equation given by the function f(x)=x2 f(x) = x^2 . We know f(?)=16 f(?) = 16 , so we can write:

x2=16 x^2 = 16

Step 2: To solve for x x , we take the square root of both sides of the equation:

x=±16 x = \pm \sqrt{16}

Step 3: Solve for 16 \sqrt{16} :

The square root of 16 is 4, so:

x=4 x = 4 or x=4 x = -4

This gives us the two solutions: x=4 x = 4 and x=4 x = -4 .

Step 4: Compare these solutions to the answer choices. The correct choice is:

f(4) f(4) and f(4) f(-4)

Therefore, the solution to the problem is f(4) f(4) and f(4) f(-4) .

Answer

f(4) f(4) f(4) f(-4)