Solve Multi-digit Subtraction: 6002 minus 373

Multi-digit Subtraction with Borrowing

6002  373776 \begin{aligned} &6002 \\ -& \\ &~~373 \\ &\underline{\phantom{776}} & \\ \end{aligned}

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Solve
00:03 Each time we subtract 2 digits, and then we place
00:06 2 is less than 3
00:09 The tens digit is also equal to 0 so we can't borrow from it
00:12 The hundreds digit is also equal to 0 so we can't borrow from it
00:15 We'll borrow a thousand from the thousands for the hundreds
00:19 So now instead of 0, we'll have 10 in the hundreds!
00:22 And now we'll borrow ten from the hundreds for the tens
00:25 Which will turn the hundreds from 10 to 9
00:29 So now instead of 0, we'll have 10 in the tens!
00:32 And now we'll borrow ten from the tens for the ones
00:35 Which will turn the tens from 10 to 9
00:39 So now instead of 0, we'll have 10 in the ones!
00:45 Now we subtract ones from ones, and place in ones
00:49 Subtract tens from tens, and place in tens
00:52 Subtract hundreds from hundreds, and place in hundreds
00:55 Place 0 in the missing digits
00:59 Subtract thousands from thousands, and place in thousands
01:04 And this is the solution to the problem

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

6002  373776 \begin{aligned} &6002 \\ -& \\ &~~373 \\ &\underline{\phantom{776}} & \\ \end{aligned}

2

Step-by-step solution

Let's solve 6002373 6002 - 373 using the vertical subtraction method:

  • Step 1: Write the numbers in column form, ensuring they are aligned by place value: 6002  373 \begin{array}{c} 6002 \\ -~~373 \\ \hline \end{array}

  • Step 2: Subtract each digit starting from the right (units place). First, inspect the units place:

    • We need to subtract 3 from 2. Since 3 > 2, we must borrow.

    • Borrow 1 from 600 (next higher order, thousands in this case):

      • The result: Change 6002 to 5992.

    • Now, subtract 123=9 12 - 3 = 9 , in the units place.

    5992  373         9 \begin{array}{c} 5992 \\ -~~373~~~ \\ \hline ~~~~~~9 \\ \end{array}

  • Step 3: Move to the tens place:

    • Subtract 97=2 9 - 7 = 2 .

    5992  373      29 \begin{array}{c} 5992 \\ -~~373~~~ \\ \hline ~~~29 \\ \end{array}

  • Step 4: Move to the hundreds place:

    • Subtract 93=6 9 - 3 = 6 .

    5992  373     629 \begin{array}{c} 5992 \\ -~~373~~~~ \\ \hline ~629 \\ \end{array}

  • Step 5: Move to the thousands place:

    • We have 5 remaining and no subtraction needed here.

    • Therefore, the result is 5629 5629 .

    5992  373   5629 \begin{array}{c} 5992 \\ -~~373~~~ \\ \hline 5629 \\ \end{array}

Therefore, the solution to 6002373 6002 - 373 is 5629 5629 .

3

Final Answer

5629

Key Points to Remember

Essential concepts to master this topic
  • Borrowing Rule: When top digit is smaller, borrow from next column
  • Technique: Change 6002 to 5992 when borrowing from thousands
  • Check: Add the answer back: 5629 + 373 = 6002 ✓

Common Mistakes

Avoid these frequent errors
  • Forgetting to adjust all affected digits when borrowing
    Don't just borrow 1 and forget to reduce the lending digit = wrong calculation! When you borrow from 6 in 6002, it becomes 5, and the 0s become 10s. Always adjust every digit involved in the borrowing chain.

Practice Quiz

Test your knowledge with interactive questions

\( \begin{aligned} &105 \\ -& \\ &~~~~3 \\ &\underline{\phantom{776}} & \\ \end{aligned} \)

FAQ

Everything you need to know about this question

Why do I need to borrow from the thousands place when there are zeros?

+

When you have zeros in the middle, you must borrow through all of them! The 6 in 6002 becomes 5, and each 0 becomes 9 until you reach the column where you actually need the extra 10.

How do I know which direction to borrow from?

+

Always borrow from the column to the left (the next higher place value). You can't borrow from smaller place values because they represent smaller amounts.

What happens to 6002 when I borrow for the units place?

+

It becomes 5992! The 6 becomes 5, both 0s become 9s, and the final 2 becomes 12 (which you write as 2 but think of as 12 for subtraction).

Can I subtract from left to right instead?

+

No, always work from right to left in subtraction! Starting from the left can lead to borrowing mistakes because you might change digits you haven't processed yet.

How can I check if my answer is correct?

+

Use addition to check: 5629+373=6002 5629 + 373 = 6002 . If your addition gives you the original larger number, your subtraction is correct!

What if I make a borrowing mistake?

+

Don't panic! Start over with the borrowing step. Write down each step clearly: 6002 → 5992, then subtract column by column. Practice makes perfect!

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Arithmetic Operations questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations