Solve the Cubic Equation: 9x³ - 12x² = 0

Question

Find the value of the parameter x.

9x312x2=0 9x^3-12x^2=0

Video Solution

Step-by-Step Solution

To solve this problem, we will factor the given polynomial expression:

Step 1: Identify the greatest common factor (GCF) in the equation 9x312x2=0 9x^3 - 12x^2 = 0 . The GCF of the terms 9x3 9x^3 and 12x2 12x^2 is 3x2 3x^2 .

Step 2: Factor out the GCF from the polynomial:

9x312x2=3x2(3x4)=0 9x^3 - 12x^2 = 3x^2(3x - 4) = 0 .

Step 3: Apply the zero-product property. Set each factor equal to zero:

  • 3x2=0 3x^2 = 0
  • 3x4=0 3x - 4 = 0

Step 4: Solve each equation for x x :

For 3x2=0 3x^2 = 0 , divide by 3:

x2=0 x^2 = 0 x=0 x = 0 .

For 3x4=0 3x - 4 = 0 , add 4 to both sides and then divide by 3:

3x=4 3x = 4
x=43 x = \frac{4}{3} .

Thus, the solutions to the equation 9x312x2=0 9x^3 - 12x^2 = 0 are x=0 x = 0 and x=43 x = \frac{4}{3} .

Therefore, the correct answer is:

x=0,x=43 x=0, x=\frac{4}{3}

Answer

x=0,x=43 x=0,x=\frac{4}{3}