Solve the following exercise:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Solve the following exercise:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The given fractions are and .
Step 2: The common denominator for these fractions is 10, as it is already the denominator of the second fraction.
Step 3: Convert to a fraction with a denominator of 10 by multiplying both the numerator and the denominator by 2:
.
Step 4: Add the fractions with the common denominator:
.
Step 5: Compare the result with the possible choices given. The correct choice is , which matches choice id="2".
Therefore, the solution to the problem is .
\( \frac{2}{4}+\frac{1}{4}= \)\( \)
You can only add fractions when they have the same denominator. Think of it like adding different units - you can't add 1 apple + 6 oranges directly. You need to convert to a common "unit" first!
Look for the least common multiple (LCM) of the denominators. Since 10 is already a multiple of 5, we can use 10 as our common denominator. Convert to tenths!
It's good practice to simplify fractions when possible! when you divide both parts by 2. However, the answer choices show , so that's acceptable here.
When denominators have no common factors, multiply them together. For 3 and 7, the common denominator would be 21. Convert both fractions to twenty-firsts before adding!
Absolutely! , so you could solve . Both methods work - choose whichever feels easier!
Get unlimited access to all 18 Operations with Fractions questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime