Solve the Inequality |2x-1| > -10: Key Insights

Given:

2x1>10 \left|2x-1\right|>-10

Which of the following statements is necessarily true?

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Given:

2x1>10 \left|2x-1\right|>-10

Which of the following statements is necessarily true?

2

Step-by-step solution

Let's solve the problem:
Step 1: Recognize that the inequality we are dealing with is 2x1>10 \left|2x-1\right| > -10 .
Step 2: Consider the nature of absolute values: for any real xx, 2x1\left|2x-1\right| is always non-negative (i.e., 0\geq 0).
Step 3: Observe that the right side of the inequality, 10-10, is negative. Therefore, the inequality 2x1>10\left|2x-1\right| > -10 is always true because 2x1\left|2x-1\right| as a non-negative quantity will always be greater than any negative number.
Step 4: Since the inequality condition always holds true, this means that the statement is valid for all xx.

Therefore, the correct answer is that the inequality holds for all xx.

The solution to the problem is For all x.

3

Final Answer

For all x

Practice Quiz

Test your knowledge with interactive questions

Given:

\( \left|2x-1\right|>-10 \)

Which of the following statements is necessarily true?

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Absolute Value and Inequality questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations