Solve the Linear Inequality: 7x+c ≤ 4x-2

Linear Inequalities with Parameter Variables

Solve the inequality:

7x+c4x2 7x+c \leq 4x-2

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Solve the inequality:

7x+c4x2 7x+c \leq 4x-2

2

Step-by-step solution

To solve the inequality7x+c4x2 7x+c \leq 4x-2 , we follow these steps:

  • Subtract 4x 4x from both sides: 3x+c2 3x + c \leq -2

  • Subtract c c from both sides: 3x2c 3x \leq -2 - c

  • Divide both sides by 3 3 : xc+23 x \leq -\frac{c+2}{3}

3

Final Answer

xc+23 x \leq -\frac{c+2}{3}

Key Points to Remember

Essential concepts to master this topic
  • Rule: Isolate variable terms on one side, constants on other
  • Technique: Subtract 4x from both sides: 7x - 4x = 3x
  • Check: Substitute boundary value into original inequality to verify direction ✓

Common Mistakes

Avoid these frequent errors
  • Flipping inequality sign when dividing by positive number
    Don't flip the inequality when dividing 3x ≤ -2-c by positive 3 = wrong direction! The inequality sign only flips when multiplying or dividing by a negative number. Always keep the same direction when dividing by positive numbers.

Practice Quiz

Test your knowledge with interactive questions

Solve the following inequality:

\( 3x+4 \leq 10 \)

FAQ

Everything you need to know about this question

Why doesn't the parameter c affect the inequality direction?

+

The parameter c only changes the boundary value, not the direction! Since we divide by positive 3, the ≤ sign stays the same. The inequality direction only flips when dividing by negative numbers.

How do I check my answer when there's a parameter?

+

Pick a specific value for c (like c = 1) and substitute both your solution and this c-value into the original inequality. Both sides should satisfy the inequality relationship.

What if I got x ≥ instead of x ≤?

+

Check your algebra steps! Most likely you either added instead of subtracted or flipped the sign incorrectly. Remember: we're moving terms to isolate x, and dividing by positive 3 keeps the ≤ direction.

Can I solve this without moving the parameter c?

+

No - you must treat c like any other number and move it to the constant side. The goal is always to get x by itself on one side of the inequality.

Does the answer depend on what c equals?

+

The boundary value depends on c, but the solution method stays the same! Whether c = 5 or c = -10, you'll always get the form xc+23 x \leq -\frac{c+2}{3} .

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Inequality questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations