Complete the equation:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Complete the equation:
Let's simplify the expression given in the left side:
For ease of calculation we will replace the square with the question mark (indicating the missing part that needs to be completed) with the letter , meaning we will perform the substitution:
Next, we will expand the parentheses using the expanded distribution law:
Let's note that in the formula template for the distribution law mentioned we assume by default that the operation between the terms inside the parentheses is addition, so we won't forget of course that the sign preceding the term is an integral part of it, and we will also apply the laws of sign multiplication and thus we can represent any expression in parentheses, which we expand using the aforementioned formula, first, as an expression where addition is performed between all terms (if necessary),
Therefore, we will first represent each of the expressions in parentheses in the multiplication on the left side as an expression where addition exists:
Now for convenience, let's write down again the expanded distribution law mentioned earlier:
And we'll apply it to our problem:
We'll continue and apply the laws of multiplication signs, remembering that multiplying expressions with identical signs will yield a positive result, and multiplying expressions with different signs will yield a negative result:
Now, we want to present the expression on the left side in a form identical to the expression on the right side, that is - as a sum of three terms with different exponents: second power (squared), first power, and zero power (i.e., the free number - not dependent on x). To do this - we will factor out the part of the expression on the left side where the terms are in the first power:
Now in order for equality to hold - we require that the coefficient of the first-power term on both sides of the equation be identical and at the same time - we require that the free term on both sides of the equation be identical as well:
In other words, we require that:
Let's summarize the solution steps:
Therefore, the missing expression is the number meaning - the correct answer is a'.
2
\( x^2+6x+9=0 \)
What is the value of X?
Look at the expanded form on the right side! The middle coefficient (5) tells you that 3 + ? = 5, so ? = 2. The constant term (6) confirms this: 3 × 2 = 6 ✓
While that might work sometimes, it doesn't help you understand the concept. Learning to compare coefficients systematically will help you solve any factoring problem, even without multiple choices!
Use FOIL (First, Outer, Inner, Last): becomes . Then combine like terms: .
Substitute your value back! If the missing factor is 2, expand and verify you get exactly .
If k+3≠5 and 3k≠6 give different values for k, then there's no solution! This means the original equation cannot be completed with a single number.
Get unlimited access to all 18 Factorization questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime