Solve (x+3)(x+□)=x²+5x+6: Find the Missing Factor

Factoring Quadratics with Missing Terms

Complete the equation:

(x+3)(x+)=x2+5x+6 (x+3)(x+\textcolor{red}{☐})=x^2+5x+6

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Complete the missing
00:03 We will use the shortened multiplication formulas
00:07 We will match the numbers to the appropriate variables
00:10 According to the trinomial, we know that the sum of numbers equals B
00:15 and their product equals C
00:19 We will substitute the appropriate number
00:27 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Complete the equation:

(x+3)(x+)=x2+5x+6 (x+3)(x+\textcolor{red}{☐})=x^2+5x+6

2

Step-by-step solution

Let's simplify the expression given in the left side:

(x+3)(x+?) (x+3)(x+\textcolor{purple}{\boxed{?}}) For ease of calculation we will replace the square with the question mark (indicating the missing part that needs to be completed) with the letter k \textcolor{purple}{k} , meaning we will perform the substitution:

(x+3)(x+?)=x2+5x+6(x+3)(x+k)=x2+5x+6 (x+3)(x+\textcolor{purple}{\boxed{?}})=x^2+5x+6 \\ \downarrow\\ (x+3)(x+\textcolor{purple}{k})=x^2+5x+6 \\ Next, we will expand the parentheses using the expanded distribution law:

(a+b)(c+d)=ac+ad+bc+bd (\textcolor{red}{a}+\textcolor{blue}{b})(c+d)=\textcolor{red}{a}c+\textcolor{red}{a}d+\textcolor{blue}{b}c+\textcolor{blue}{b}d Let's note that in the formula template for the distribution law mentioned we assume by default that the operation between the terms inside the parentheses is addition, so we won't forget of course that the sign preceding the term is an integral part of it, and we will also apply the laws of sign multiplication and thus we can represent any expression in parentheses, which we expand using the aforementioned formula, first, as an expression where addition is performed between all terms (if necessary),

Therefore, we will first represent each of the expressions in parentheses in the multiplication on the left side as an expression where addition exists:

(x+3)(x+k)=x2+5x+6(x+(+3))(x+(+k))=x2+5x+6 (x+3)(x+\textcolor{purple}{k})=x^2+5x+6 \\ \downarrow\\ \big(x+(+3)\big)\big(x+(\textcolor{purple}{+k})\big)=x^2+5x+6 \\ Now for convenience, let's write down again the expanded distribution law mentioned earlier:

(a+b)(c+d)=ac+ad+bc+bd (\textcolor{red}{a}+\textcolor{blue}{b})(c+d)=\textcolor{red}{a}c+\textcolor{red}{a}d+\textcolor{blue}{b}c+\textcolor{blue}{b}d And we'll apply it to our problem:

(x+(+3))(x+(+k))=x2+5x+6xx+x(+k)+(+3)x+(+3)(+k)=x2+5x+6 \big (\textcolor{red}{x}+\textcolor{blue}{(+3)}\big)\big(x+(+\textcolor{purple}{k})\big)=x^2+5x+6 \\ \downarrow\\ \textcolor{red}{x}\cdot x +\textcolor{red}{x}\cdot (+\textcolor{purple}{k})+\textcolor{blue}{(+3)}\cdot x +\textcolor{blue}{(+3)}\cdot (+\textcolor{purple}{k})=x^2+5x+6 \\ We'll continue and apply the laws of multiplication signs, remembering that multiplying expressions with identical signs will yield a positive result, and multiplying expressions with different signs will yield a negative result:

xx+x(+k)+(+3)x+(+3)(+k)=x2+5x+6x2+kx+3x+3k=x2+5x+6 \textcolor{red}{x}\cdot x +\textcolor{red}{x}\cdot (+\textcolor{purple}{k})+\textcolor{blue}{(+3)}\cdot x +\textcolor{blue}{(+3)}\cdot (+\textcolor{purple}{k})=x^2+5x+6 \\ \downarrow\\ x^2+\textcolor{purple}{k}x+3x+3\textcolor{purple}{k}=x^2+5x+6 \\ Now, we want to present the expression on the left side in a form identical to the expression on the right side, that is - as a sum of three terms with different exponents: second power (squared), first power, and zero power (i.e., the free number - not dependent on x). To do this - we will factor out the part of the expression on the left side where the terms are in the first power:

x2+kx+3x+3k=x2+5x+6x2+(k+3)x+3k=x2+5x+6 x^2+\underline{\textcolor{purple}{k}x+3x}+3\textcolor{purple}{k}=x^2+5x+6 \\ \downarrow\\ x^2+\underline{(\textcolor{purple}{k}+3)x}+3\textcolor{purple}{k}=x^2+5x+6

Now in order for equality to hold - we require that the coefficient of the first-power term on both sides of the equation be identical and at the same time - we require that the free term on both sides of the equation be identical as well:

x2+(k+3)x+3k=x2+5x+6 x^2+\underline{\underline{(\textcolor{purple}{k}+3)}}x+\underline{\underline{\underline{3\textcolor{purple}{k}}}}=x^2+\underline{\underline{5}}x+\underline{\underline{\underline{6}}} In other words, we require that:

{k+3=5k=23k=6k=2 \begin{cases} \textcolor{purple}{k}+3=5\rightarrow\boxed{\textcolor{purple}{k}=2}\\ 3\textcolor{purple}{k}=6\rightarrow\boxed{\textcolor{purple}{k}=2} \end{cases}

Let's summarize the solution steps:

(x+3)(x+?)=x2+5x+6?=k(x+3)(x+k)=x2+5x+6x2+kx+3x+3k=x2+5x+6x2+(k+3)x+3k=x2+5x+6x2+(k+3)x+3k=x2+5x+6{k+3=5k=23k=6k=2?=2 (x+3)(x+\textcolor{purple}{\boxed{?}})=x^2+5x+6 \leftrightarrow\textcolor{red}{\boxed{\textcolor{purple}{\boxed{?}}=\textcolor{purple}{k}}} \\ \downarrow\\ (x+3)(x+\textcolor{purple}{k})=x^2+5x+6 \\ \downarrow\\ x^2+\underline{\textcolor{purple}{k}x+3x}+3\textcolor{purple}{k}=x^2+5x+6 \\ \downarrow\\ x^2+\underline{(\textcolor{purple}{k}+3)x}+3\textcolor{purple}{k}=x^2+5x+6\\ \downarrow\\ x^2+\underline{\underline{(\textcolor{purple}{k}+3)}}x+\underline{\underline{\underline{3\textcolor{purple}{k}}}}=x^2+\underline{\underline{5}}x+\underline{\underline{\underline{6}}} \\ \begin{cases} \textcolor{purple}{k}+3=5\rightarrow\boxed{\textcolor{purple}{k}=2}\\ 3\textcolor{purple}{k}=6\rightarrow\boxed{\textcolor{purple}{k}=2} \end{cases} \\ \textcolor{red}{\bm{\rightarrow}\boxed{\textcolor{purple}{\boxed{?}}=\textcolor{purple}{2}}} Therefore, the missing expression is the number 2 2 meaning - the correct answer is a'.

3

Final Answer

2

Key Points to Remember

Essential concepts to master this topic
  • Expansion Rule: Use distributive property to expand (x+a)(x+b)=x2+(a+b)x+ab (x+a)(x+b) = x^2 + (a+b)x + ab
  • Technique: Compare coefficients: middle term 5x means a+b=5, constant 6 means ab=6
  • Check: Verify (x+3)(x+2)=x2+5x+6 (x+3)(x+2) = x^2+5x+6 by expanding ✓

Common Mistakes

Avoid these frequent errors
  • Guessing the missing factor without systematic comparison
    Don't just try random numbers in the box = wrong answers and wasted time! This ignores the mathematical relationship between coefficients. Always expand the left side systematically and compare coefficients of like terms to find the missing factor.

Practice Quiz

Test your knowledge with interactive questions

\( x^2+6x+9=0 \)

What is the value of X?

FAQ

Everything you need to know about this question

How do I know which number goes in the missing factor?

+

Look at the expanded form on the right side! The middle coefficient (5) tells you that 3 + ? = 5, so ? = 2. The constant term (6) confirms this: 3 × 2 = 6 ✓

Why can't I just work backwards from the answer choices?

+

While that might work sometimes, it doesn't help you understand the concept. Learning to compare coefficients systematically will help you solve any factoring problem, even without multiple choices!

What if I get confused expanding the parentheses?

+

Use FOIL (First, Outer, Inner, Last): (x+3)(x+k) (x+3)(x+k) becomes x2+kx+3x+3k x^2 + kx + 3x + 3k . Then combine like terms: x2+(k+3)x+3k x^2 + (k+3)x + 3k .

How do I check my answer is correct?

+

Substitute your value back! If the missing factor is 2, expand (x+3)(x+2) (x+3)(x+2) and verify you get exactly x2+5x+6 x^2+5x+6 .

What if both conditions don't give me the same answer?

+

If k+3≠5 and 3k≠6 give different values for k, then there's no solution! This means the original equation cannot be completed with a single number.

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Factorization questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations