Technical Explanation: Break Down Each Fraction in the System of Equations

Question

3x+1y=4 \frac{3}{x}+\frac{1}{y}=4

5x1y=4 \frac{5}{x}-\frac{1}{y}=4

Video Solution

Step-by-Step Solution

We begin by examining the given system of equations:

3x+1y=4 \frac{3}{x} + \frac{1}{y} = 4 --- (1)

5x1y=4 \frac{5}{x} - \frac{1}{y} = 4 --- (2)

Let's eliminate 1y \frac{1}{y} by adding equations (1) and (2):

(3x+1y)+(5x1y)=4+4 \left(\frac{3}{x} + \frac{1}{y}\right) + \left(\frac{5}{x} - \frac{1}{y}\right) = 4 + 4

3x+5x=8 \frac{3}{x} + \frac{5}{x} = 8

8x=8 \frac{8}{x} = 8

Solving for x x , we have:

x=1 x = 1

Now, substitute x=1 x = 1 back into equation (1):

31+1y=4 \frac{3}{1} + \frac{1}{y} = 4

3+1y=4 3 + \frac{1}{y} = 4

1y=1 \frac{1}{y} = 1

Solving for y y , we obtain:

y=1 y = 1

Thus, the solution to the system of equations is x=1 x = 1 and y=1 y = 1 .

The correct answer choice is: x=1,y=1 x=1,y=1 .

Answer

x=1,y=1 x=1,y=1