Examples with solutions for Vertex Representation: Using roots

Exercise #1

Find the positive and negative domains of the function below:

y=(x+10)2+2 y=-\left(x+10\right)^2+2

Step-by-Step Solution

To solve this problem, we start by identifying where the given quadratic function is positive and where it is negative.

  • Step 1: Convert the vertex form to solve for y=0 y = 0 . The equation is (x+10)2+2=0 -\left(x + 10\right)^2 + 2 = 0 .
  • Step 2: Rearrange the equation to find roots:
    (x+10)2=2 (x+10)^2 = 2 .
    Taking the square root, we have x+10=±2 x + 10 = \pm \sqrt{2} .
  • Step 3: Solve for x x :
    x=10+2 x = -10 + \sqrt{2} and x=102 x = -10 - \sqrt{2} .
  • Step 4: Analyze the intervals:

The roots divide the number line into intervals. We check these intervals for y>0 y > 0 and y<0 y < 0 .

  • For y>0 y > 0 : The function is a downward-opening parabola, hence positive between its roots: 102<x<10+2 -10-\sqrt{2} < x < -10+\sqrt{2} .
  • For y<0 y < 0 : The function is negative outside the interval where it is positive, giving x<102 x < -10-\sqrt{2} or x>10+2 x > -10+\sqrt{2} .

Therefore, for the positive domain x>0 x > 0 , we have the interval 102<x<10+2 -10-\sqrt{2} < x < -10+\sqrt{2} . For the negative domain, it is when x<0 x < 0 such that x<102 x < -10-\sqrt{2} or x>10+2 x > -10+\sqrt{2} .

Thus, the correct solution choice is:

x>0:102<x<10+2 x > 0 : -10-\sqrt{2} < x < -10+\sqrt{2}

x>10+2 x > -10+\sqrt{2} or x<0:x<102 x < 0 : x < -10-\sqrt{2}

Answer

x > 0 : -10-\sqrt{2} < x < -10+\sqrt{2}

x > -10+\sqrt{2} or x < 0 : x <-10-\sqrt{2}

Exercise #2

Find the positive and negative domains of the function below:

y=(x+10)23 y=\left(x+10\right)^2-3

Step-by-Step Solution

To solve this problem, we need to determine when y=(x+10)23 y = (x+10)^2 - 3 is greater than and less than zero.

Start by finding the roots of the equation:

Set y=0 y = 0 :

(x+10)23=0(x+10)^2 - 3 = 0

Rearrange the equation to find:

(x+10)2=3(x+10)^2 = 3

Take the square root of both sides:

x+10=±3x + 10 = \pm\sqrt{3}

Solving these gives:

  • x=10+3x = -10 + \sqrt{3}
  • x=103x = -10 - \sqrt{3}

These roots divide the number line into three intervals:

  • (,103)(-\infty, -10 - \sqrt{3})
  • (103,10+3)(-10 - \sqrt{3}, -10 + \sqrt{3})
  • (10+3,)(-10 + \sqrt{3}, \infty)

Test each interval to determine where the function is positive or negative:

For x<103 x < -10 - \sqrt{3} : Choose x=11 x = -11

Then: y=((11+10)23)=13=2 y = ((-11 + 10)^2 - 3) = 1 - 3 = -2

So, y<0 y < 0 in the interval (,103)(-\infty, -10 - \sqrt{3}).

For 103<x<10+3 -10 - \sqrt{3} < x < -10 + \sqrt{3} : Choose x=10 x = -10

Then: y=((10+10)23)=03=3 y = ((-10 + 10)^2 - 3) = 0 - 3 = -3

So, y<0 y < 0 in the interval (103,10+3)(-10 - \sqrt{3}, -10 + \sqrt{3}).

For x>10+3 x > -10 + \sqrt{3} : Choose x=0 x = 0

Then: y=((0+10)23)=1003=97 y = ((0 + 10)^2 - 3) = 100 - 3 = 97

So, y>0 y > 0 in the interval (10+3,)(-10 + \sqrt{3}, \infty).

Therefore, the positive domain is x>10+3 x > -10 + \sqrt{3} while the negative domain is x<10+3 x < -10 + \sqrt{3} .

Using the analysis above and applying it to the choices, the correct response is:

x<0:103<x<10+3 x < 0 : -10-\sqrt{3} < x < -10+\sqrt{3}

x>10+3 x > -10+\sqrt{3} or x>0:x<103 x > 0 : x < -10-\sqrt{3}

Answer

x < 0 : -10-\sqrt{3} < x < -10-\sqrt{3}

x > -10+\sqrt{3} or x > 0 : x < -10-\sqrt{3}

Exercise #3

Find the positive and negative domains of the function below:

y=(x12)2+2 y=-\left(x-12\right)^2+2

Step-by-Step Solution

To solve this problem, follow these steps:

  • Step 1: Find the roots of the function. Set y=0=(x12)2+2 y = 0 = -\left(x-12\right)^2 + 2 .

  • Step 2: Rearrange and solve for x x : (x12)2+2amp;=0(x12)2amp;=2 \begin{aligned} -\left(x-12\right)^2 + 2 &amp;= 0 \\ \left(x-12\right)^2 &amp;= 2 \end{aligned} Solving gives x12=±2 x - 12 = \pm \sqrt{2} , resulting in roots x=12+2 x = 12 + \sqrt{2} and x=122 x = 12 - \sqrt{2} .

  • Step 3: Determine the intervals: xlt;122122lt;xlt;12+2xgt;12+2 \begin{aligned} x &lt; 12 - \sqrt{2} \\ 12 - \sqrt{2} &lt; x &lt; 12 + \sqrt{2} \\ x &gt; 12 + \sqrt{2} \end{aligned} Step 4: Test each interval to check the sign of y y : \begin{itemize}

  • For x < 12 - \sqrt{2} and x > 12 + \sqrt{2} , (x12)2 (x-12)^2 becomes larger than 2, so y=[(x12)2]+2 y= -[(x-12)^2] + 2 is negative.

  • For 12 - \sqrt{2} < x < 12 + \sqrt{2} , (x12)2 (x-12)^2 is less than 2, so y=[(x12)2]+2 y = -[(x-12)^2] + 2 is positive.

Thus, the function is negative for x > 12 + \sqrt{2} or x < 12 - \sqrt{2} , and positive for 12 - \sqrt{2} < x < 12 + \sqrt{2} .

Therefore, the positive and negative domains of the function are:

x > 12+\sqrt{2} or x < 0 : x < 12-\sqrt{2}

x > 0 : 12-\sqrt{2} < x < 12+\sqrt{2}

Answer

x > 12+\sqrt{2} or x < 0 : x < 12-\sqrt{2}

x > 0 : 12-\sqrt{2} < x < 12+\sqrt{2}

Exercise #4

Find the positive and negative domains of the function below:

y=(x14)2+8 y=-\left(x-14\right)^2+8

Step-by-Step Solution

To find the positive and negative domains of the function y=(x14)2+8 y = -\left(x-14\right)^2 + 8 , we'll start by identifying the roots of the quadratic equation.

Step 1: Find the roots of the equation:
To find when the function is zero, set y=0 y = 0 :
(x14)2+8=0 -\left(x-14\right)^2 + 8 = 0 .

Step 2: Solve for x x :
Rearrange the equation:
(x14)2=8 -\left(x-14\right)^2 = -8
(x14)2=8 (x-14)^2 = 8 .

Take the square root on both sides:
x14=±8 x-14 = \pm\sqrt{8} .
This simplifies to x14=±22 x - 14 = \pm 2\sqrt{2} .

Add 14 to both sides to solve for x x :
x=14±22 x = 14 \pm 2\sqrt{2} .
So, the roots are x=14+22 x = 14 + 2\sqrt{2} and x=1422 x = 14 - 2\sqrt{2} .

Step 3: Analyze intervals between roots and outside:
The roots divide the x x -axis into three intervals: x < 14 - 2\sqrt{2} , 14 - 2\sqrt{2} < x < 14 + 2\sqrt{2} , and x > 14 + 2\sqrt{2} .

- For 14 - 2\sqrt{2} < x < 14 + 2\sqrt{2} , y > 0 because points between roots are above the x x -axis.
- For x < 14 - 2\sqrt{2} or x > 14 + 2\sqrt{2} , y < 0 because points outside of roots are below the x x -axis.

Conclusion:
The positive domain, where y > 0 , is 14 - 2\sqrt{2} < x < 14 + 2\sqrt{2} .
The negative domain, where y < 0 , is x < 14 - 2\sqrt{2} or x > 14 + 2\sqrt{2} .

Therefore, the solution is:
Positive domain: x > 0 : 14-2\sqrt{2} < x < 14+2\sqrt{2} .
Negative domain: x > 14+2\sqrt{2} or x < 0 : x < 14-2\sqrt{2} .

Answer

x > 0 : 14-2\sqrt{2} < x < 14+2\sqrt{2}

x > 14+2\sqrt{2}

or

x < 0 : x < 14-2\sqrt{2}

Exercise #5

Find the positive and negative domains of the function below:

y=(x1)22 y=\left(x-1\right)^2-2

Step-by-Step Solution

To find the positive and negative domains of the function y=(x1)22 y = (x-1)^2 - 2 , we need to determine the points where the function intersects the x-axis, as these will mark changes in sign.

Step 1: Set the function equal to zero to find the roots.
(x1)22=0(x-1)^2 - 2 = 0

Step 2: Move -2 to the other side and solve:
(x1)2=2(x-1)^2 = 2

Step 3: Solve for x x by taking the square root of both sides:
x1=±2x - 1 = \pm \sqrt{2}

Step 4: Solve for x x by isolating it:
x=1±2x = 1 \pm \sqrt{2}

The roots are x=1+2x = 1 + \sqrt{2} and x=12x = 1 - \sqrt{2}. These roots divide the x-axis into three parts.

Step 5: Evaluate the function behavior in each interval defined by these roots.

  • For x<12 x < 1 - \sqrt{2} , pick a point such as nearly approaching zero value and test the sign.
  • For 12<x<1+21 - \sqrt{2} < x < 1 + \sqrt{2} , pick a midpoint value and test.
  • For x>1+2 x > 1 + \sqrt{2} , pick a value greater than root for testing function positivity.

Step 6: Determine where the function is positive and negative:

  • Within the interval [12,1+2][1-\sqrt{2}, 1+\sqrt{2}], the function lies below the x-axis and is negative.
  • Outside this interval, specifically x<12x < 1 - \sqrt{2} or x>1+2x > 1 + \sqrt{2}, the function lies above the x-axis and is positive.

The positive domain is x<12 x < 1 - \sqrt{2} or x>1+2 x > 1 + \sqrt{2} and the negative domain is 12<x<1+2 1 - \sqrt{2} < x < 1 + \sqrt{2} .

Therefore, the solution is:

x<0:12<x<1+2x < 0 : 1-\sqrt{2} < x < 1+\sqrt{2}

x>1+2x > 1+\sqrt{2} or x>0:x<12x > 0 : x < 1-\sqrt{2}

Answer

x < 0 : 1-\sqrt{2} < x < 1+\sqrt{2}

x > 1+\sqrt{2} or x > 0 : x < 1-\sqrt{2}

Exercise #6

Find the positive and negative domains of the function below:

y=(x212)2+12 y=-\left(x-2\frac{1}{2}\right)^2+\frac{1}{2}

Step-by-Step Solution

To find the positive and negative domains of the function y=(x2.5)2+0.5 y = -\left(x - 2.5\right)^2 + 0.5 , we analyze when y y is greater than and less than zero.

  • Step 1: Solve for the positive domain ( y > 0 ).

We need to solve the inequality:
-\left(x - 2.5\right)^2 + 0.5 > 0 .

Rearrange this to:
-\left(x - 2.5\right)^2 > -0.5 .

Remove the negative sign by multiplying by 1-1 (which flips the inequality sign):
\left(x - 2.5\right)^2 < 0.5 .

Taking the square root of both sides gives:
|x - 2.5| < \sqrt{0.5} .
This implies:
-\sqrt{0.5} < x - 2.5 < \sqrt{0.5} .

Solve for x x :
2.5 - \sqrt{0.5} < x < 2.5 + \sqrt{0.5} .

Step 2: Solve for the negative domain ( y < 0 ).

From the inequality:
-\left(x - 2.5\right)^2 + 0.5 < 0 .

Rearrange to:
-\left(x - 2.5\right)^2 < -0.5 .

Again, multiply by 1-1:
\left(x - 2.5\right)^2 > 0.5 .

Taking the square root gives:
|x - 2.5| > \sqrt{0.5} .
This implies:
x - 2.5 < -\sqrt{0.5} or x - 2.5 > \sqrt{0.5} .

Solving gives:
x < 2.5 - \sqrt{0.5} or x > 2.5 + \sqrt{0.5} .

Recall 0.5=22\sqrt{0.5} = \frac{\sqrt{2}}{2}, so:
The positive domain is: 2.5 - \frac{\sqrt{2}}{2} < x < 2.5 + \frac{\sqrt{2}}{2} .
The negative domain is: x < 2.5 - \frac{\sqrt{2}}{2} or x > 2.5 + \frac{\sqrt{2}}{2} .

Therefore, the correct answer based on the choices provided is:

x<0:2\frac{1}{2}-\frac{\sqrt{2}}{2} or x > 2\frac{1}{2} + \frac{\sqrt{2}}{2}

x > 0 : 2\frac{1}{2} - \frac{\sqrt{2}}{2} < x < 2\frac{1}{2} + \frac{\sqrt{2}}{2}

Answer

x<0:2\frac{1}{2}-\frac{\sqrt{2}}{2} or x > 2\frac{1}{2} + \frac{\sqrt{2}}{2}

x > 0 : 2\frac{1}{2} - \frac{\sqrt{2}}{2} < x < 2\frac{1}{2} + \frac{\sqrt{2}}{2}

Exercise #7

Find the positive and negative domains of the function below:

y=(x+3)25 y=\left(x+3\right)^2-5

Step-by-Step Solution

To find the positive and negative domains of the function y=(x+3)25 y = (x+3)^2 - 5 , we first identify the roots by setting y=0 y = 0 and solving for x x .

Let's solve (x+3)25=0(x+3)^2 - 5 = 0:

  1. Start with the equation: (x+3)25=0(x+3)^2 - 5 = 0
  2. Add 5 to both sides: (x+3)2=5(x+3)^2 = 5
  3. Take the square root of both sides: x+3=±5x+3 = \pm \sqrt{5}
  4. Solve for x x :
    • x=3+5 x = -3 + \sqrt{5}
    • x=35 x = -3 - \sqrt{5}

Thus, the roots of the function are x=3+5 x = -3 + \sqrt{5} and x=35 x = -3 - \sqrt{5} .

Since the parabola opens upwards (the coefficient of (x+3)2(x+3)^2 is positive), the function y y is:

  • Negative between the roots: 35<x<3+5 -3 - \sqrt{5} < x < -3 + \sqrt{5}
  • Positive outside these roots: x<35 x < -3 - \sqrt{5} and x>3+5 x > -3 + \sqrt{5}

Therefore, the positive and negative domains are:

  • Negative domain: 35<x<3+5 -3 - \sqrt{5} < x < -3 + \sqrt{5}
  • Positive domain: x<35 x < -3 - \sqrt{5} or x>3+5 x > -3 + \sqrt{5}

Upon reviewing the multiple choice options, the correct answer that corresponds to this solution is:

x < 0 : -3-\sqrt{5} < x < -3+\sqrt{5}

x>-3+\sqrt{5} or x > 0 : x < -3-\sqrt{5}

Answer

x < 0 : -3-\sqrt{5} < x < -3+\sqrt{5}

x>-3+\sqrt{5} or x > 0 : x < -3-\sqrt{5}

Exercise #8

Find the positive and negative domains of the function below:

y=(x+4)21014 y=\left(x+4\right)^2-10\frac{1}{4}

Step-by-Step Solution

To determine the positive and negative domains of the function, follow these steps:

  • Step 1: Solve (x+4)2=414(x+4)^2 = \frac{41}{4}.
  • Step 2: This implies x+4=±412x+4 = \pm \frac{\sqrt{41}}{2}.
  • Step 3: Solving these gives the roots: x=8+412x = \frac{-8+\sqrt{41}}{2} and x=8412x = \frac{-8-\sqrt{41}}{2}.
  • Step 4: Divide the real number line using these roots into intervals:
    • Interval 1: x<8412x < \frac{-8-\sqrt{41}}{2}
    • Interval 2: 8412<x<8+412\frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2}
    • Interval 3: x>8+412x > \frac{-8+\sqrt{41}}{2}
  • Step 5: Test each interval to see where the function is greater or less than zero, using the sign of (x+4)2414(x+4)^2 - \frac{41}{4}.

Testing reveals that:

  • For Interval 1, the function is positive.
  • For Interval 2, the function is negative.
  • For Interval 3, the function is positive.

Thus, the negative domain is 8412<x<8+412 \frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2} and the positive domains are x>8+412 x > \frac{-8+\sqrt{41}}{2} or x<8412 x < \frac{-8-\sqrt{41}}{2} .

Therefore, the correct answer is:

x<0:8412<x<8+412 x < 0 :\frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2}

x>8+412 x > \frac{-8+\sqrt{41}}{2} or x>0:x<8412 x > 0 : x < \frac{-8-\sqrt{41}}{2}

Answer

x < 0 :\frac{-8-\sqrt{41}}{2} < x < \frac{-8+\sqrt{41}}{2}

x > \frac{-8+\sqrt{41}}{2} or x > 0 : x < \frac{-8-\sqrt{41}}{2}

Exercise #9

Find the positive and negative domains of the function below:

y=(x+4)2+6 y=-\left(x+4\right)^2+6

Step-by-Step Solution

The function given is y=(x+4)2+6 y = -\left(x+4\right)^2 + 6 . This is in vertex form y=a(xh)2+k y = a(x-h)^2 + k with vertex at (4,6)(-4, 6).

Step 1: To find the x-values for which the function is positive or negative, set y=0 y = 0 :

(x+4)2+6=0-\left(x+4\right)^2 + 6 = 0

(x+4)2=6\left(x+4\right)^2 = 6

Step 2: Solve for x x :

Take the square root of both sides:

x+4=±6x + 4 = \pm \sqrt{6} i.e., x=4±6x = -4 \pm \sqrt{6}

Step 3: Find where the function is positive or negative. The parabola opens downward, so the intervals are:

  • Negative domain: x<46x < -4 - \sqrt{6} and x>4+6x > -4 + \sqrt{6}; outside this interval.
  • Positive domain: 46<x<4+6-4 - \sqrt{6} < x < -4 + \sqrt{6}; within this interval.

Conclusively:

x>0:426<x<4+26 x > 0 : -4-\sqrt{26} < x < -4+\sqrt{26}

x>4+26 x > -4+\sqrt{26} or x<0:x<426 x < 0 : x < -4-\sqrt{26}

Therefore, the solution to this problem is as follows:

For x>0 x > 0 : 426<x<4+26 -4-\sqrt{26} < x < -4+\sqrt{26}

For x<0 x < 0 : x<426 x < -4-\sqrt{26} and (x>4+26)( x > -4 + \sqrt{26})

Answer

x > 0 : -4-\sqrt{26} < x < -4+\sqrt{26}

x > -4+\sqrt{26} or x < 0 : x< -4-\sqrt{26}

Exercise #10

Find the positive and negative domains of the function below:

y=(x+5)26 y=\left(x+5\right)^2-6

Step-by-Step Solution

To determine where the function y=(x+5)26 y = (x + 5)^2 - 6 is positive and negative, we start by solving the equation:

(x+5)26=0(x + 5)^2 - 6 = 0

Adding 6 to both sides gives:

(x+5)2=6(x + 5)^2 = 6

Taking the square root of both sides, we obtain two solutions:

x+5=6x + 5 = \sqrt{6} or x+5=6x + 5 = -\sqrt{6}

Solving these, we get:

x=5+6x = -5 + \sqrt{6} and x=56x = -5 - \sqrt{6}

These roots divide the number line into three intervals: (,56)(- \infty, -5 - \sqrt{6}), (56,5+6)(-5 - \sqrt{6}, -5 + \sqrt{6}), and (5+6,)(-5 + \sqrt{6}, \infty).

Next, we determine the sign of the function in each interval:

  • For x<56x < -5 - \sqrt{6}, choose x=10x = -10:
  • (x+5)26=((10)+5)26=(5)26=256=19>0(x + 5)^2 - 6 = ((-10) + 5)^2 - 6 = (-5)^2 - 6 = 25 - 6 = 19 > 0. Therefore, the function is positive.

  • For 56<x<5+6-5 - \sqrt{6} < x < -5 + \sqrt{6}, choose x=5x = -5:
  • (x+5)26=((5)+5)26=026=6<0(x + 5)^2 - 6 = ((-5) + 5)^2 - 6 = 0^2 - 6 = -6 < 0. Therefore, the function is negative.

  • For x>5+6x > -5 + \sqrt{6}, choose x=0x = 0:
  • (x+5)26=(0+5)26=526=256=19>0(x + 5)^2 - 6 = (0 + 5)^2 - 6 = 5^2 - 6 = 25 - 6 = 19 > 0. Therefore, the function is positive.

Thus, the function is positive on the intervals x<56x < -5 - \sqrt{6} and x>5+6x > -5 + \sqrt{6}, and negative on the interval 56<x<5+6-5 - \sqrt{6} < x < -5 + \sqrt{6}.

Therefore, the positive domain is x>5+6x > -5+\sqrt{6} or x>0:x<56x > 0 : x < -5-\sqrt{6}, and the negative domain is x<0:56<x<5+6x < 0 : -5-\sqrt{6} < x < -5+\sqrt{6}.

Answer

x > -5+\sqrt{6} or x > 0 : x < -5-\sqrt{6}

x < 0 : -5-\sqrt{6} < x < -5+\sqrt{6}

Exercise #11

Find the positive and negative domains of the function below:

y=(x6)23 y=\left(x-6\right)^2-3

Step-by-Step Solution

To find the positive and negative domains of the function y=(x6)23 y = (x-6)^2 - 3 , follow these steps:

  • Step 1: Set y=0 y = 0 to find the roots of the equation. This gives us (x6)23=0(x-6)^2 - 3 = 0.
  • Step 2: Add 3 to both sides to simplify, resulting in (x6)2=3(x-6)^2 = 3.
  • Step 3: Take the square root of both sides. We have two solutions: x6=3 x - 6 = \sqrt{3} and x6=3 x - 6 = -\sqrt{3} .
  • Step 4: Solve for x x from each equation:
    • For x6=3 x - 6 = \sqrt{3} , x=6+3 x = 6 + \sqrt{3} .
    • For x6=3 x - 6 = -\sqrt{3} , x=63 x = 6 - \sqrt{3} .
  • Step 5: Determine the intervals:
    • Interval 1: x<63 x < 6 - \sqrt{3} , insert a test point to determine sign.
    • Interval 2: 63<x<6+3 6 - \sqrt{3} < x < 6 + \sqrt{3} , insert a test point to determine sign.
    • Interval 3: x>6+3 x > 6 + \sqrt{3} , insert a test point to determine sign.
  • Step 6: Based on the intervals:
    • For x<63 x < 6 - \sqrt{3} and x>6+3 x > 6 + \sqrt{3} , y>0 y > 0 .
    • For 63<x<6+3 6 - \sqrt{3} < x < 6 + \sqrt{3} , y<0 y < 0 .

The positive domains are: x<63 x < 6 - \sqrt{3} or x>6+3 x > 6 + \sqrt{3} .

The negative domain is: 63<x<6+3 6 - \sqrt{3} < x < 6 + \sqrt{3} .

The correct answer to the problem is:

x > 6+\sqrt{3} or x < 0 : x < 6-\sqrt{3}

x < 0 : 6-\sqrt{3} < x < 6+\sqrt{3}

Answer

x > 6+\sqrt{3} or x > 0 : x < 6-\sqrt{3}

x < 0 : 6-\sqrt{3} < x < 6+\sqrt{3}

Exercise #12

Find the positive and negative domains of the function below:

y=(x+7)2+12 y=-\left(x+7\right)^2+12

Step-by-Step Solution

To solve this problem, we follow these essential steps:

  • Step 1: Set y=0 y = 0 to find the roots of the equation.
  • Step 2: Analyze the expression (x+7)2+12=0-\left(x+7\right)^2 + 12 = 0.
  • Step 3: Isolate (x+7)2\left(x+7\right)^2 by adding 12-12 to both sides, so: (x+7)2=12\left(x+7\right)^2 = 12.
  • Step 4: Solve (x+7)2=12\left(x+7\right)^2 = 12 taking the square root of both sides, resulting in x+7=±12 x + 7 = \pm\sqrt{12}.
  • Step 5: Simplify and solve for x x to find: x=7±23 x = -7 \pm 2\sqrt{3}.

Step 6: Now, determine the positive and negative domains:

  • The roots are x=7+23 x = -7 + 2\sqrt{3} and x=723 x = -7 - 2\sqrt{3} .
  • Since the parabola opens downward, the function is positive between the roots 723 -7 - 2\sqrt{3} and 7+23 -7 + 2\sqrt{3} , where x>0 x \gt 0 .
  • The function is negative for x>7+23 x \gt -7 + 2\sqrt{3} and x<723 x \lt -7 - 2\sqrt{3} .

Therefore, the solution to the problem is:
Positive domain: 723<x<7+23 -7 - 2\sqrt{3} < x < -7 + 2\sqrt{3}
Negative domain: x>7+23 x > -7 + 2\sqrt{3} or x<723 x < -7 - 2\sqrt{3} .

As outlined between the choice options, the correct answer is represented under choice 4:

x > -7+2\sqrt{3} or x < 0 : x < -7-2\sqrt{3}

x > 0 : -7-2\sqrt{3} < x < -7+2\sqrt{3}

Answer

x > -7+2\sqrt{3} or x < 0 : x < -7-2\sqrt{3}

x > 0 : -7-2\sqrt{3} < x < -7+2\sqrt{3}