Examples with solutions for Difference of squares: Solving the equation

Exercise #1

Solve:

(2+x)(2x)=0 (2+x)(2-x)=0

Video Solution

Step-by-Step Solution

We use the abbreviated multiplication formula:

4x2=0 4-x^2=0

We isolate the terms and extract the root:

4=x2 4=x^2

x=4 x=\sqrt{4}

x=±2 x=\pm2

Answer

±2

Exercise #2

Complete the following exercise:

(x+12)(x12)=0 (\sqrt{x}+\frac{1}{2})(\sqrt{x}-\frac{1}{2})=0

Video Solution

Step-by-Step Solution

To solve the equation (x+12)(x12)=0(\sqrt{x} + \frac{1}{2})(\sqrt{x} - \frac{1}{2}) = 0, we can apply the zero-product property, which tells us that if a product of two factors is zero, at least one of the factors must be zero.

Let us proceed with each factor:

  • First Factor: x+12=0\sqrt{x} + \frac{1}{2} = 0
    Solving for xx, subtract 12\frac{1}{2} from both sides:
    x=12\sqrt{x} = -\frac{1}{2}
    Squaring both sides, we get:
    x=(12)2=14x = \left(-\frac{1}{2}\right)^2 = \frac{1}{4}.
    However, since the square root should be zero or positive, this case does not yield a real solution.
  • Second Factor: x12=0\sqrt{x} - \frac{1}{2} = 0
    Solving for xx, add 12\frac{1}{2} to both sides:
    x=12\sqrt{x} = \frac{1}{2}
    Squaring both sides, we have:
    x=(12)2=14x = \left(\frac{1}{2}\right)^2 = \frac{1}{4}.

Therefore, the solution to the equation (x+12)(x12)=0(\sqrt{x} + \frac{1}{2})(\sqrt{x} - \frac{1}{2}) = 0 is x=14x = \frac{1}{4}.

Upon reviewing the provided choices, the correct answer that matches our solution is: 14 \frac{1}{4} (Option 2).

Answer

14 \frac{1}{4}