Examples with solutions for Area of a Triangle: Extended distributive law

Exercise #1

Triangle ABC is a right triangle.

The area of the triangle is 6 cm².

Calculate X and the length of the side BC.

S=6S=6S=6444X-1X-1X-1X+1X+1X+1AAACCCBBB

Video Solution

Step-by-Step Solution

We use the formula to calculate the area of the right triangle:

ACBC2=cateto×cateto2 \frac{AC\cdot BC}{2}=\frac{cateto\times cateto}{2}

And compare the expression with the area of the triangle 6 6

4(X1)2=6 \frac{4\cdot(X-1)}{2}=6

Multiplying the equation by the common denominator means that we multiply by 2 2

4(X1)=12 4(X-1)=12

We distribute the parentheses before the distributive property

4X4=12 4X-4=12 / +4 +4

4X=16 4X=16 / :4 :4

X=4 X=4

We replace X=4 X=4 in the expression BC BC and

find:

BC=X1=41=3 BC=X-1=4-1=3

Answer

X=4, BC=3

Exercise #2

Triangle DEF is an isosceles triangle

GE=X+2 DG=8

The area of the triangle is 24 cm².

DG is the height of the FE

Calculate the side FE

S=24S=24S=24888EEEDDDFFFGGGX+2

Step-by-Step Solution

To solve this problem, we will calculate the length of side FE FE using the area formula for a triangle:

  • Step 1: Use the formula for the area of a triangle: A=12×base×height A = \frac{1}{2} \times \text{base} \times \text{height} .

  • Step 2: Substitute the given values into the formula.
    We know that A=24cm2 A = 24 \, \text{cm}^2 and height=8cm \text{height} = 8 \, \text{cm} .

  • Step 3: Set up the equation: 24=12×base×8 24 = \frac{1}{2} \times \text{base} \times 8 .

  • Step 4: Simplify and solve for the base:24=82×base24=4×base 24 = \frac{8}{2} \times \text{base} \rightarrow 24 = 4 \times \text{base} .

  • Step 5: Solve for base \text{base} : base=244=6cm \text{base} = \frac{24}{4} = 6 \, \text{cm} .

Therefore, the side FE FE of the triangle is 6 cm.

Answer

6 cm

Exercise #3

The height of the house in the drawing is 12x+9 12x+9

Whilst the width of the house x+2y x+2y

Given that the ceiling height is half the height of the square section.

Express the area of the house shape in the drawing :

Video Solution

Step-by-Step Solution

Let's draw a line in the middle of the drawing that divides the house into 2

Meaning it divides the triangle and the rectangular part.

The 2 lines represent the heights in both shapes.

If we connect the height of the roof with the height of the rectangular part, we obtain the total height.

Let's insert the known data in the formula:

12hsquare+hsquare=12x+9 \frac{1}{2}h_{\text{square}}+h_{square}=12x+9

32hsquare=12x+9 \frac{3}{2}h_{\text{square}}=12x+9

We'll multiply by two thirds as follows:

hsquare=2(12x+9)3=2(4x+3) h_{\text{square}}=\frac{2(12x+9)}{3}=2(4x+3)

hsquare=8x+6 h_{\text{square}}=8x+6

If the height of the triangle equals half the height of the rectangular part, we can calculate it using the following formula:

htriangle=12(8x+6)=4x+3 h_{\text{triangle}}=\frac{1}{2}(8x+6)=4x+3

Now we can calculate the area of the triangular part:

(x+2y)×(4x+3)2=4x2+3x+8xy+6y2=2x2+1.5x+4xy+3y \frac{(x+2y)\times(4x+3)}{2}=\frac{4x^2+3x+8xy+6y}{2}=2x^2+1.5x+4xy+3y

Now we can calculate the rectangular part:

(x+2y)×(8x+6)=8x2+6x+16xy+12y (x+2y)\times(8x+6)=8x^2+6x+16xy+12y

Now let's combine the triangular area with the rectangular area to express the total area of the shape:

S=2x2+1.5x+4xy+3y+8x2+6x+16xy+12y S=2x^2+1.5x+4xy+3y+8x^2+6x+16xy+12y

S=10x2+20xy+7.5x+15y S=10x^2+20xy+7.5x+15y

Answer

3x2+8xy+112x+4y2+3y 3x^2+8xy+1\frac{1}{2}x+4y^2+3y