Examples with solutions for Average Speed: Using units of measurement

Exercise #1

A projectile is fired at a speed of 2500 km/h and travels 135 meters until it hits its target.

It passes through the target, which reduces its speed to 1300 km/h, after which point it continues for another 1.8 seconds until it hits a wall.

What is its average speed from the moment of firing until it stops?

Video Solution

Step-by-Step Solution

Step 1: Convert speeds from km/h to m/s.
- Initial speed: 2500 km/h=2500×10003600 m/s=25000003600694.44 m/s2500 \text{ km/h} = \frac{2500 \times 1000}{3600} \text{ m/s} = \frac{2500000}{3600} \approx 694.44 \text{ m/s}
- Speed after hitting the target: 1300 km/h=1300×10003600 m/s=13000003600361.11 m/s1300 \text{ km/h} = \frac{1300 \times 1000}{3600} \text{ m/s} = \frac{1300000}{3600} \approx 361.11 \text{ m/s}

Step 2: Calculate the time to reach the target.
Using the formula time=distancespeed \text{time} = \frac{\text{distance}}{\text{speed}} :
Time to target: 135 m694.44 m/s0.1944 seconds \frac{135 \text{ m}}{694.44 \text{ m/s}} \approx 0.1944 \text{ seconds}

Step 3: Calculate the total distance.
Total distance traveled = 135 meters (to the target) + distance traveled after the target.
Distance after target: 361.11 m/s×1.8 seconds=649.998 meters650 meters361.11 \text{ m/s} \times 1.8 \text{ seconds} = 649.998 \text{ meters} \approx 650 \text{ meters}
Total distance = 135+650=785 meters135 + 650 = 785 \text{ meters}

Step 4: Calculate the total time.
Total time = time to target + time after target = 0.1944 seconds+1.8 seconds=1.9944 seconds0.1944 \text{ seconds} + 1.8 \text{ seconds} = 1.9944 \text{ seconds}

Step 5: Calculate the average speed.
Using Average speed=Total distanceTotal time \text{Average speed} = \frac{\text{Total distance}}{\text{Total time}} :
Average speed = 785 m1.9944 s393.68 m/s \frac{785 \text{ m}}{1.9944 \text{ s}} \approx 393.68 \text{ m/s}

Upon reviewing the final average speed calculation, we note that the earlier provided correct answer of 248.75 248.75 meters per second does not align with this result, indicating discrepancies in either calculation or initial assumptions. Nevertheless, the calculated solution above is 393.68 393.68 meters per second.

Answer

393.68 393.68 meters per second