log4x+log2−log9=log24
?=x
\( \log4x+\log2-\log9=\log_24 \)
?=x
\( \log_9e^3\times(\log_224-\log_28)(\ln8+\ln2) \)
\( \frac{\log_45+\log_42}{3\log_42}= \)
\( \log7x+\log(x+1)-\log7=\log2x-\log x \)
\( ?=x \)
\( \log_64\times\log_9x=(\log_6x^2-\log_6x)(\log_92.5+\log_91.6) \)
?=x
To solve the equation , we will follow these steps:
Step 1: Simplify the left side:
The left side can be combined using the properties of logarithms:
Now, using the subtraction property:
Step 2: Convert the right side using the change of base formula:
We recognize that , so .
Step 3: Equate the expressions and solve for :
Now equate:
This implies:
Thus, solving for :
Therefore, the solution to the problem is .
We will solve the problem step by step:
Step 1: Simplify
Step 2: Simplify
Step 3: Simplify
Step 4: Combine the results
Therefore, the solution to the problem is .
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Combine the logarithms in the numerator using the sum of logarithms property:
Step 2: Simplify the entire expression :
This follows from the property that .
Therefore, the solution to the problem is .
Defined domain
x>0
x+1>0
x>-1
We reduce by: and by
Undefined domain x>0
Defined domain
To solve this problem, we'll carefully apply logarithmic properties:
Therefore, the correct solution is: For all .
For all 0 < x
Calculate the value of the following expression:
\( \ln4\times(\log_7x^7-\log_7x^4-\log_7x^3+\log_2y^4-\log_2y^3-\log_2y) \)
\( \frac{2\log_78}{\log_74}+\frac{1}{\log_43}\times\log_29= \)
\( \frac{\log_311}{\log_34}+\frac{1}{\ln3}\cdot2\log3= \)
\( \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}= \)
\( -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})= \)
Calculate the value of the following expression:
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Simplify the logarithmic expression. We'll simplify the parts involving first, then those involving .
For the terms with :
- Convert terms using the power rule: , , and .
- The expression becomes .
- Simple arithmetic yields , which simplifies to .
For the terms with :
- Similarly, terms use the power rule: , , and .
- The expression is .
- Simple arithmetic gives , which also simplifies to .
Step 2: Substitute these back into the original expression:
Original expression:
.
Therefore, the value of the expression is .
To solve the problem , we will apply various logarithmic rules:
Step 1: Simplify .
Step 2: Simplify .
Step 3: Add the results from Steps 1 and 2:
.
Therefore, the solution to the problem is .
To solve this problem, we'll proceed as follows:
Now, let's work through each step:
Step 1: We begin by converting each logarithm to the natural logarithm base.
Using the change of base formula, we have:
.
Step 2: Next, simplify the second expression:
.
This follows because in natural logarithms converts to , and thus:
.
Hence, our entire expression now is .
Step 3: Express as a logarithm. Using the properties of logarithms:
, since .
Therefore, the entire expression becomes:
.
By the properties of logarithms, this can also be expressed as:
.
Thus, the expression simplifies directly to:
.
Therefore, the solution to the problem is .
To solve this problem, we'll simplify the expression step-by-step, using algebraic rules for logarithms:
First, apply the logarithm quotient rule to the numerator:
The denominator is .
By changing the base, use because . Now, as . So, .
Therefore, the reciprocal is .
The complete logarithmic expression simplifies as follows:
Using the power rule, . Plug this back into the expression:
The cancels within the fraction, and we are left with .
Therefore, the solution to the problem is .
To solve this problem, we'll follow these steps:
Step 1: Apply the change-of-base formula to .
Step 2: Apply the reciprocal property to .
Step 3: Use the subtraction property of logs to simplify the expression.
Step 4: Combine the simplified logarithms and multiply by -3.
Now, let's work through each step:
Step 1: Using the change-of-base formula, we have .
Step 2: Apply the reciprocal property to the third term: .
Step 3: Substitute into the expression: .
Step 4: Combine terms using the properties of logs: .
Step 5: Simplify to get: .
Multiply by -3: .
Therefore, the solution to the problem is .
\( \frac{1}{\ln4}\cdot\frac{1}{\log_810}= \)
\( \log_3x^2\log_527-\log_58=\ln e \)
\( \log_23x\times\log_58=\log_5a+\log_52a \)
Given a>0 , express X by a
Find X
\( \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x) \)
Solve for X:
\( \ln x+\ln(x+1)-\ln2=3 \)
To solve the problem, we must evaluate the expression .
First, convert using the change of base formula. We have:
Substitute this back into the original expression:
.
Next, we need to simplify the expression. We know that and .
Substitute these into the expression:
= .
Simplify by canceling :
= .
Now express , meaning this is equivalent to . Continuing, the expression .
Therefore, the simplified solution to the given expression is .
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: Given the equation , we know that . We will first simplify the right side to get:
Step 2: Use the change of base formula.
Using , rewrite and :
Plug in the values:
Step 3: Multiply through by to eliminate the denominators:
Now knowing , solve the equation:
Apply the logarithm base rule:
Step 4: Simplify and solve for . Recognize this exponent could become :
Finally, solve for :
Therefore, the solution to the problem is .
Given a>0 , express X by a
Let's solve the problem step-by-step:
We start with the equation:
We simplify the right side using the product rule for logarithms:
Next, we simplify on the left side:
Thus, we substitute into the original equation:
Now, divide both sides by :
Using the change of base formula, express and with base 2:
Substitute these into the equation:
This implies:
Raising 2 to both sides of the equation to remove the logarithms:
Therefore, solving for :
Thus, we conclude:
Therefore, the value of in terms of is .
Find X
To solve the problem, we proceed as follows:
Given the equation:
Step 1: Express using the change of base formula:
Step 2: Substitute into the original equation:
Step 3: Simplify using :
Step 4: Cancel and simplify:
Step 5: Cancel 2 on both sides:
Step 6: Use the properties of logarithms:
Step 7: Simplify :
Step 8: Use properties :
Step 9: This equality is true for all x > 0, considering domain restrictions:
\text{For } x > 0
Thus, the solution is valid for all such that x > 0
Therefore, the correct solution is, For all \mathbf{x > 0}.
For all x>0
Solve for X:
The equation to solve is .
Step 1: Combine the logarithms using the product and quotient rules:
Step 2: Eliminate the logarithm by exponentiating both sides:
Step 3: Solve for by clearing the fraction:
Step 4: Expand and set up a quadratic equation:
Step 5: Use the quadratic formula , where , , and :
Step 6: Simplify under the square root:
Step 7: Ensure . Given will be positive, is the valid solution.
Therefore, the solution to the problem is .
\( \frac{\log_8x^3}{\log_8x^{1.5}}+\frac{1}{\log_{49}x}\times\log_7x^5= \)
\( \frac{\log_47\times\log_{\frac{1}{49}}a}{c\log_4b}= \)
\( \log_89-\log_83+\log_4x^2=\log_81.5+\log_82+\log_4(-x^2-11x-9) \)
?=x
\( \log_49x+\log_4(x+4)-\log_43=\ln2e+\ln\frac{1}{2e} \)
Find X
\( \log_5x+\log_5(x+2)+\log_25-\log_22.5=\log_37\times\log_79 \)
To solve the given problem, we begin by simplifying each component of the expression.
Step 1: Simplify .
Applying the power rule of logarithms, we get:
, and .
Thus, .
Step 2: Simplify .
First, notice that by the power rule.
Applying the change of base formula, because .
This gives .
Therefore, .
Step 3: Combine the results from Step 1 and Step 2.
The simplified expression is .
Therefore, the solution to the problem is .
To solve this problem, we'll follow these steps:
Let's work through each step:
Step 1: Using the change-of-base formula, and . Choose (common log) for simplicity.
Note that . Also, , so . Therefore, .
Step 2: The product simplifies to after canceling .
Step 3: The expression becomes , which simplifies to . Convert into , leading to . Using the change-of-base formula again, this gives .
This can be rewritten using inverse log properties as .
Therefore, the solution to the problem is .
?=x
To solve the equation: , we proceed as follows:
Step 1: Simplify Both Sides
On the left-hand side (LHS), apply logarithmic subtraction:
.
Note remains and convert using the base switch to :
.
Thus, the LHS combines into:
(because ).
On the right-hand side (RHS):
Combine:
.
Also apply for term:
.
Step 2: Equalize Both Sides
Equate LHS and RHS logarithmic expressions:
.
The cancels out on both sides, leaving:
.
Step 3: Solve for
Since the denominators are equal, set the numerators equal:
.
Translate this into an exponential equation:
or
.
Let , solve the resulting quadratic equation:
.
Then, finding valid by allowing roots of polynomial calculations should yield laws consistency:
or rather substituting potential values. After appropriate checks:
The valid that satisfies the problem is thus .
Find X
To solve this logarithmic equation, we will simplify both sides using logarithm properties.
Step 1: Combine the logarithms on the left side.
The left side is . Using the properties of logarithms, we can combine these logs:
This simplifies to:
Step 2: Simplify the right side.
The right side is . Using properties of natural logarithms, combine as follows:
Step 3: Equating both sides, we have:
Step 4: Convert the logarithmic equation to an exponential equation. Since the logarithmic expression equals zero, it signifies:
Step 5: Solve the equation :
Combine and expand the terms:
Step 6: Solve the quadratic equation using the quadratic formula , where , , and :
Calculate:
Thus, the solution is:
This matches the correct choice.
Therefore, the solution to the problem is .
To solve this problem, we will follow these steps:
Now, let's proceed:
Step 1: Simplify the left-hand side:
We can combine the logs as follows:
The constants are simplified as:
Thus, the entire left-hand side becomes:
Step 2: Simplify the right-hand side:
can be written using the change of base formula:
and . Multiplying these, we have:
Step 3: Equate and solve:
Equate the simplified versions:
So, subtracting 1 from both sides:
Taking antilogarithm, we find:
Rearrange to form a quadratic equation:
Step 4: Solve the quadratic equation:
Use the quadratic formula, where , , :
The valid answer must ensure , so .
Therefore, the solution to the problem is .