Analyzing y = (1/3)x² - 3: Domain and Positive Values

Question

Find the positive and negative domains of the function below:

y=13x23 y=\frac{1}{3}x^2-3

Then determine for which values of x x the following is true:

f(x) > 0

Step-by-Step Solution

We will solve the quadratic inequality 13x23>0 \frac{1}{3}x^2 - 3 > 0 .

Step 1: Find roots of the equation 13x23=0 \frac{1}{3}x^2 - 3 = 0 .

Rewriting, we have:

13x2=3 \frac{1}{3}x^2 = 3

Multiply both sides by 3 to clear the fraction:

x2=9 x^2 = 9

Then take the square root of both sides:

x=±3 x = \pm 3

Step 2: Determine the sign of f(x)=13x23 f(x) = \frac{1}{3}x^2 - 3 on the intervals determined by the roots:

  • For x<3 x < -3 , let x=4 x = -4 : f(4)=13(4)23=1633=73>0 f(-4) = \frac{1}{3}(-4)^2 - 3 = \frac{16}{3} - 3 = \frac{7}{3} > 0 .
  • For 3<x<3 -3 < x < 3 , let x=0 x = 0 : f(0)=13(0)23=3<0 f(0) = \frac{1}{3}(0)^2 - 3 = -3 < 0 .
  • For x>3 x > 3 , let x=4 x = 4 : f(4)=13(4)23=1633=73>0 f(4) = \frac{1}{3}(4)^2 - 3 = \frac{16}{3} - 3 = \frac{7}{3} > 0 .

Step 3: From the interval test, we find that f(x)>0 f(x) > 0 when x<3 x < -3 or x>3 x > 3 .

Therefore, the solution to the problem is x>3 x > 3 or x<3 x < -3 .

Answer

x > 3 or x < -3