Compare Mixed Numbers to 14%: Sorting Decimals and Fractions

Question

Organise the following values into two groups of those greater than 14% and those less than 14%:

0.1,620,640,1495,13 0.1,\frac{6}{20},\frac{6}{40},\frac{14}{95},\frac{1}{3}

Video Solution

Step-by-Step Solution

To solve this problem, we'll convert all given values to decimal form and compare them with 0.14.

  • Convert 620\frac{6}{20} to a decimal: 620=0.3\frac{6}{20} = 0.3.
  • Convert 640\frac{6}{40} to a decimal: 640=0.15\frac{6}{40} = 0.15.
  • Convert 1495\frac{14}{95} to a decimal: 14950.1474\frac{14}{95} \approx 0.1474.
  • Convert 13\frac{1}{3} to a decimal: 130.3333\frac{1}{3} \approx 0.3333.
  • 0.10.1 is already a decimal.

Now compare each value to 0.14:

  • 0.1<0.140.1 < 0.14
  • 0.3>0.140.3 > 0.14
  • 0.15>0.140.15 > 0.14
  • 0.1474>0.140.1474 > 0.14
  • 0.3333>0.140.3333 > 0.14

Therefore, grouping the values:

  • Values greater than 14%: 13\frac{1}{3}, 640\frac{6}{40}, 620\frac{6}{20}
  • Values less than 14%: 1495\frac{14}{95}, 0.10.1

In conclusion, the values greater than 14% are 13\frac{1}{3}, 640\frac{6}{40}, 620\frac{6}{20} and less than 14% are 1495\frac{14}{95}, 0.10.1.

The correct answer choice is:

\frac{1}{3},\frac{6}{40},\frac{6}{20}>14\%

\frac{14}{95},0.1<14\%

Answer

\frac{1}{3},\frac{6}{40},\frac{6}{20}>14\%

\frac{14}{95},0.1<14\%