Create an Algebraic Expression Using Constants a=1, b=16, c=64

Create an algebraic expression based on the following parameters:

a=1,b=16,c=64 a=1,b=16,c=64

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Convert the parameters to a quadratic function
00:03 We'll use the formula to represent a quadratic equation
00:13 Connect the parameter to the corresponding unknown according to the formula
00:30 Write the function in its reduced form
00:37 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Create an algebraic expression based on the following parameters:

a=1,b=16,c=64 a=1,b=16,c=64

2

Step-by-step solution

To solve this problem, let's proceed with the construction of the quadratic expression:

  • Step 1: Recognize the standard form of a quadratic expression, which is ax2+bx+c ax^2 + bx + c .
  • Step 2: Substitute the given values into this formula:
    • a=1 a = 1
    • b=16 b = 16
    • c=64 c = 64
    Plugging in these values, we determine the expression to be 1x2+16x+64 1x^2 + 16x + 64 , which simplifies to x2+16x+64 x^2 + 16x + 64 .

Thus, the algebraic expression we derive from these parameters is the quadratic expression:

x2+16x+64 x^2 + 16x + 64

This matches the correct choice provided in the given multiple-choice options.

3

Final Answer

x2+16x+64 x^2+16x+64

Practice Quiz

Test your knowledge with interactive questions

What is the value of the coefficient \( b \) in the equation below?

\( 3x^2+8x-5 \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations