The standard form of the quadratic function is:
For example:
The standard form of the quadratic function is:
For example:
Choose the correct algebraic expression based on the parameters:
\( a=-3,b=3,c=7 \)
How do you go from standard form to vertex form?
How do you go from standard form to factored form?
Look!
If we were to realize that in the standard form there is a coefficient for we will place it in the factoring formula before locating the intersection points there, as follows:
Create an algebraic expression based on the following parameters:
To derive the algebraic expression based on the parameters given, we follow these steps:
Now, let's implement these steps to form the quadratic expression:
Step 1: The given parameters are , , and .
Step 2: Our basis is the quadratic form .
Step 3: Substituting the given values, we find:
This substitution provides us with the quadratic expression , fulfilling the problem's requirements.
Therefore, the correct algebraic expression is .
Create an algebraic expression based on the following parameters:
To determine the algebraic expression, we start with the standard quadratic function:
Given the values:
We substitute these into the formula:
Simplifying the expression gives:
Thus, the algebraic expression, when these parameters are substituted, is:
The solution to the problem is .
Create an algebraic expression based on the following parameters:
To determine the algebraic expression, we will substitute the given parameters into the standard form of the quadratic function:
Substituting these values, the expression becomes:
.
This simplifies to:
.
Therefore, the algebraic expression, based on the given parameters, is .
Create an algebraic expression based on the following parameters:
To solve the problem of creating an algebraic expression with the given parameters, we will proceed as follows:
Through substitution, the expression becomes:
We can further simplify this expression:
Thus, the algebraic expression with the given parameters is .
The correct answer corresponds to choice number 1: .
Therefore, the solution to the problem is
Create an algebraic expression based on the following parameters:
To solve this problem, let's form the algebraic expression using the standard quadratic formula:
Given are the values:
,
,
.
Substituting these values into the formula, we have:
This simplifies to:
Thus, the algebraic expression is .
The correct choice from the given options is:
Choice 3:
Create an algebraic expression based on the following parameters:
\( a=0,b=1,c=0 \)
Create an algebraic expression based on the following parameters:
\( a=-1,b=0,c=0 \)
Create an algebraic expression based on the following parameters:
\( a=1,b=16,c=64 \)