Standard Form of the Quadratic Function

🏆Practice standard representation

Standard Form of the Quadratic Function

The standard form of the quadratic function is:
Y=ax2+bx+cY=ax^2+bx+c

For example:
Y=4x2+3x+15Y=4x^2+3x+15

Start practice

Test yourself on standard representation!

Choose the correct algebraic expression based on the parameters:

\( a=-3,b=3,c=7 \)

Practice more now

How do you go from standard form to vertex form?

  • We need to find the vertex of the parabola using the formula to find the XX vertex.
  • Let's find the YY vertex.
  • Let's place in the vertex form template the X X vertex instead of PP, the YY vertex instead of CC and the aa instead of aa.

How do you go from standard form to factored form?

  • Let's find the points of intersection of the parabola with the xx axis.
  • Let's place it in the factored form template.

Look!
If we were to realize that in the standard form there is a coefficient for X2X^2 we will place it in the factoring formula before locating the intersection points there, as follows:

y=a×(xt)×(xk) y=a\times(x-t)\times(x-k)


Examples and exercises with solutions of the Standard form of the quadratic function

Exercise #1

Create an algebraic expression based on the following parameters:

a=4,b=2,c=5 a=4,b=2,c=5

Video Solution

Step-by-Step Solution

To derive the algebraic expression based on the parameters given, we follow these steps:

  • Step 1: Recognize the given parameters: a=4 a = 4 , b=2 b = 2 , and c=5 c = 5 .
  • Step 2: Acknowledge that the standard form for a quadratic expression is y=ax2+bx+c y = ax^2 + bx + c .
  • Step 3: Substitute the given parameter values into this quadratic expression.

Now, let's implement these steps to form the quadratic expression:
Step 1: The given parameters are a=4 a = 4 , b=2 b = 2 , and c=5 c = 5 .
Step 2: Our basis is the quadratic form y=ax2+bx+c y = ax^2 + bx + c .
Step 3: Substituting the given values, we find:

y=4x2+2x+5 y = 4x^2 + 2x + 5

This substitution provides us with the quadratic expression y=4x2+2x+5 y = 4x^2 + 2x + 5 , fulfilling the problem's requirements.

Therefore, the correct algebraic expression is 4x2+2x+5 4x^2 + 2x + 5 .

Answer

4x2+2x+5 4x^2+2x+5

Exercise #2

Create an algebraic expression based on the following parameters:

a=1,b=1,c=0 a=-1,b=1,c=0

Video Solution

Step-by-Step Solution

To determine the algebraic expression, we start with the standard quadratic function:

y=ax2+bx+c y = ax^2 + bx + c

Given the values:

  • a=1 a = -1
  • b=1 b = 1
  • c=0 c = 0

We substitute these into the formula:

y=(1)x2+1x+0 y = (-1)x^2 + 1x + 0

Simplifying the expression gives:

y=x2+x y = -x^2 + x

Thus, the algebraic expression, when these parameters are substituted, is:

The solution to the problem is x2+x \boxed{-x^2 + x} .

Answer

x2+x -x^2+x

Exercise #3

Create an algebraic expression based on the following parameters:

a=1,b=1,c=0 a=1,b=1,c=0

Video Solution

Step-by-Step Solution

To determine the algebraic expression, we will substitute the given parameters into the standard form of the quadratic function:

  • The standard quadratic form is y=ax2+bx+c y = ax^2 + bx + c .
  • Substitute a=1 a = 1 , b=1 b = 1 , and c=0 c = 0 into the equation.

Substituting these values, the expression becomes:

y=1x2+1x+0 y = 1 \cdot x^2 + 1 \cdot x + 0 .

This simplifies to:

y=x2+x y = x^2 + x .

Therefore, the algebraic expression, based on the given parameters, is x2+x x^2 + x .

Answer

x2+x x^2+x

Exercise #4

Create an algebraic expression based on the following parameters:

a=3,b=0,c=3 a=3,b=0,c=-3

Video Solution

Step-by-Step Solution

To solve the problem of creating an algebraic expression with the given parameters, we will proceed as follows:

  • Step 1: Identify the given coefficients for the quadratic function, which are a=3 a = 3 , b=0 b = 0 , and c=3 c = -3 .
  • Step 2: Substitute these values into the standard quadratic expression y=ax2+bx+c y = ax^2 + bx + c .

Through substitution, the expression becomes:

y=3x2+0x3 y = 3x^2 + 0x - 3

We can further simplify this expression:

y=3x23 y = 3x^2 - 3

Thus, the algebraic expression with the given parameters is y=3x23 y = 3x^2 - 3 .

The correct answer corresponds to choice number 1: 3x23 3x^2-3 .

Therefore, the solution to the problem is

y=3x23 y = 3x^2 - 3

Answer

3x23 3x^2-3

Exercise #5

Create an algebraic expression based on the following parameters:


a=1,b=1,c=1 a=1,b=-1,c=1

Video Solution

Step-by-Step Solution

To solve this problem, let's form the algebraic expression using the standard quadratic formula:

y=ax2+bx+c y = ax^2 + bx + c

Given are the values:
a=1 a = 1 ,
b=1 b = -1 ,
c=1 c = 1 .

Substituting these values into the formula, we have:
y=1x2+(1)x+1 y = 1 \cdot x^2 + (-1) \cdot x + 1

This simplifies to:
y=x2x+1 y = x^2 - x + 1

Thus, the algebraic expression is x2x+1\boldsymbol{x^2 - x + 1}.

The correct choice from the given options is:

Choice 3: x2x+1 x^2-x+1

Answer

x2x+1 x^2-x+1

Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge
Start practice