Plotting the Quadratic Function Using Parameters a, b and c

🏆Practice plotting functions with parameters

Plotting the Quadratic Function

Plotting the graph of the quadratic function and examining the roles of the parameters a,b,ca, b, c in the function of the form y=ax2+bx+cy = ax^2 + bx + c

The quadratic function has three relevant characteristics:

aa – the coefficient of X2X^2.
bb – the coefficient of XX.
cc – the constant term.

Steps to graph a quadratic function –

  1. Let's examine the parameter aa and ask: Is the function upward or downward facing?
  2. Let's find the vertex of the function using the formula and then find the Y-coordinate of the vertex.
  3. Let's find the points of intersection with the XX axis by substituting (Y=0Y=0).
  4. Let's draw a coordinate system and first mark the vertex of the parabola.
    Then, let's examine if the function is smiling or crying and mark the points of intersection with the XX axis that we found. Draw accordingly.
Start practice

Test yourself on plotting functions with parameters!

What is the value of the coefficient \( b \) in the equation below?

\( 3x^2+8x-5 \)

Practice more now

Graphing the quadratic function ausing parameters a, b and c

Let's present the quadratic function and understand the meaning of each parameter in it.
y=ax2+bx+cy=ax^2+bx+c

aa – the coefficient of X2X^2
    - -determines if the parabola will be a maximum or minimum parabola (sad or smiling)   - determines the steepness – its width.

aa must be different from 0.
If aa is positive – the parabola is a minimum parabola – smiling
If aa is negative – the parabola is a maximum parabola – sad
The larger aa is – the narrower the function will be and vice versa.

bb - the coefficient of XX
     can be any number
indicates the position of the parabola along with CC.
determines the slope of the function at the intersection point with the YY axis
(not relevant to the material) 

cc – the constant term
    is not dependent on XX
can be any number
indicates the position of the parabola along with XX
determines the y-intercept
responsible for the vertical shift of the function


Wonderful. Now, let's move on to plotting the quadratic function.

Steps to graph a quadratic function –

  1. Let's examine the parameter aa and ask: is the function upward or downward facing?
  2. Let's find the vertex of the function using the formula and then find the Y-coordinate of the vertex.
  3. Let's find the points of intersection with the XX axis by substituting (Y=0Y=0).
  4. Let's draw a coordinate system and first mark the vertex of the parabola.
    Then, let's examine if the function is smiling or sad and mark the points of intersection with the XX axis that we found. Draw accordingly.

Let's see an example -

In the following function:
Y=4X2+4x+3Y=-4X^2+4x+3

  1. a=4a=-4, negative. Therefore, the function is downward facing.
  2. Let's find the vertex of the parabola:
    X=442=48=12X=\frac{-4}{-4*2}=\frac{-4}{-8}=\frac{1}{2}
    y=4122+412+3y=-4*\frac{1^2}{2}+4*\frac{1}{2}+3
    y=4y=4
    Vertex of the parabola (12,4) (\frac{1}{2}, 4)  
     
  3. Let's find the intersection points with the XX axis
    Substitute
    Y=0Y=0
    and we get:
    4X2+4x+3=0-4X^2+4x+3=0
    X=12,112 X=-\frac{1}{2},1\frac{1}{2} 
     
  4. Draw a coordinate system, mark relevant points, and draw logically:
Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Examples with solutions for Plotting Functions with Parameters

Exercise #1

y=x2+10x y=x^2+10x

Video Solution

Step-by-Step Solution

Here we have a quadratic equation.

A quadratic equation is always constructed like this:

 

y=ax2+bx+c y = ax²+bx+c

 

Where a, b, and c are generally already known to us, and the X and Y points need to be discovered.

Firstly, it seems that in this formula we do not have the C,

Therefore, we understand it is equal to 0.

c=0 c = 0

 

a is the coefficient of X², here it does not have a coefficient, therefore

a=1 a = 1

 

b=10 b= 10

is the number that comes before the X that is not squared.

 

Answer

a=1,b=10,c=0 a=1,b=10,c=0

Exercise #2

y=2x25x+6 y=2x^2-5x+6

Video Solution

Step-by-Step Solution

In fact, a quadratic equation is composed as follows:

y = ax²-bx-c

 

That is,

a is the coefficient of x², in this case 2.
b is the coefficient of x, in this case 5.
And c is the number without a variable at the end, in this case 6.

Answer

a=2,b=5,c=6 a=2,b=-5,c=6

Exercise #3

Identify the coefficients based on the following equation

y=2x2+3x+10 y=-2x^2+3x+10

Video Solution

Step-by-Step Solution

Let's determine the coefficients for the quadratic function given by y=2x2+3x+10 y = -2x^2 + 3x + 10 .

  • Step 1: Identify a a .
    The coefficient of x2 x^2 is 2-2. Thus, a=2 a = -2 .
  • Step 2: Identify b b .
    The coefficient of x x is 33. Thus, b=3 b = 3 .
  • Step 3: Identify c c .
    The constant term is 1010. Thus, c=10 c = 10 .

Comparing these coefficients to the provided choices, the correct answer is:

a=2,b=3,c=10 a = -2, b = 3, c = 10 .

Therefore, the correct choice is Choice 4.

Answer

a=2,b=3,c=10 a=-2,b=3,c=10

Exercise #4

Determine the value of the coefficient a a in the following equation:

x2+7x9 -x^2+7x-9

Video Solution

Step-by-Step Solution

The quadratic equation in the problem is already arranged (meaning all terms are on one side and 0 on the other side), so let's proceed to answer the question asked:

The question asked in the problem - What is the value of the coefficienta a in the equation?

Let's recall the definitions of coefficients in solving quadratic equations and the roots formula:

The rule states that the roots of an equation of the form:

ax2+bx+c=0 ax^2+bx+c=0 are:

x1,2=b±b24ac2a x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

That is the coefficient a a is the coefficient of the quadratic term (meaning the term with the second power)- x2 x^2 Let's examine the equation in the problem:

x2+7x9=0 -x^2+7x-9 =0

Remember that the minus sign before the quadratic term means multiplication by: 1 -1 , therefore- we can write the equation as:

1x2+7x9=0 -1\cdot x^2+7x-9 =0

The number that multiplies the x2 x^2 , is 1 -1 hence we identify that the coefficient of the quadratic term is the number 1 -1 ,

Therefore the correct answer is A.

Answer

-1

Exercise #5

What is the value of the coefficient c c in the equation below?

4x2+9x2 4x^2+9x-2

Video Solution

Step-by-Step Solution

The quadratic equation is given as 4x2+9x2 4x^2 + 9x - 2 . This equation is in the standard form of a quadratic equation, which is ax2+bx+c ax^2 + bx + c , where a a , b b , and c c are coefficients.

  • The term 4x2 4x^2 indicates that the coefficient a=4 a = 4 .
  • The term 9x 9x indicates that the coefficient b=9 b = 9 .
  • The constant term 2-2 indicates that the coefficient c=2 c = -2 .

From this analysis, we can see that the coefficient c c is 2-2.

Therefore, the value of the coefficient c c in the equation is 2-2.

Answer

-2

Start practice