Plotting the graph of the quadratic function and examining the roles of the parameters in the function of the form
Plotting the graph of the quadratic function and examining the roles of the parameters in the function of the form
– the coefficient of .
– the coefficient of .
– the constant term.
What is the value of the coefficient \( c \) in the equation below?
\( 4x^2+9x-2 \)
Let's present the quadratic function and understand the meaning of each parameter in it.
– the coefficient of
- -determines if the parabola will be a maximum or minimum parabola (sad or smiling) - determines the steepness – its width.
must be different from 0.
If is positive – the parabola is a minimum parabola – smiling
If is negative – the parabola is a maximum parabola – sad
The larger is – the narrower the function will be and vice versa.
- the coefficient of
can be any number
indicates the position of the parabola along with .
determines the slope of the function at the intersection point with the axis
(not relevant to the material)
– the constant term
is not dependent on
can be any number
indicates the position of the parabola along with
determines the y-intercept
responsible for the vertical shift of the function
Wonderful. Now, let's move on to plotting the quadratic function.
Let's see an example -
In the following function:
\( y=2x^2-5x+6 \)
Identify the coefficients based on the following equation
\( y=2x^2-3x-6 \)
Identify the coefficients based on the following equation
\( y=3x^2+4x+5 \)
Here we have a quadratic equation.
A quadratic equation is always constructed like this:
Where a, b, and c are generally already known to us, and the X and Y points need to be discovered.
Firstly, it seems that in this formula we do not have the C,
Therefore, we understand it is equal to 0.
a is the coefficient of X², here it does not have a coefficient, therefore
is the number that comes before the X that is not squared.
Identify the coefficients based on the following equation
To solve this problem, we'll clearly delineate the given expression and compare it to the standard quadratic form:
Therefore, the coefficients for the quadratic function are , , and .
Among the provided choices, choice 3: is the correct one.
Identify the coefficients based on the following equation
To solve this problem, we'll follow these steps:
Now, let's work through each step:
Step 1: The given quadratic function is .
Step 2: The standard form of a quadratic equation is .
Step 3: By matching the given quadratic function with the standard form:
- The coefficient of is , so .
- The coefficient of is , so .
- The constant term is , so .
Therefore, the solution to the problem is , , .
What is the value of the coefficient in the equation below?
The quadratic equation of the given problem is already arranged (that is, all the terms are found on one side and the 0 on the other side), thus we approach the given problem as follows;
In the problem, the question was asked: what is the value of the coefficientin the equation?
Let's remember the definitions of coefficients when solving a quadratic equation as well as the formula for the roots:
The rule says that the roots of an equation of the form
are :
That is the coefficientis the coefficient of the term in the first power -We then examine the equation of the given problem:
That is, the number that multiplies
is
Consequently we are able to identify b, which is the coefficient of the term in the first power, as the number,
Thus the correct answer is option d.
8
Identify the coefficients based on the following equation
Let's determine the coefficients for the quadratic function given by .
Comparing these coefficients to the provided choices, the correct answer is:
.
Therefore, the correct choice is Choice 4.