Given the expression of the quadratic function
Finding the symmetry point of the function
f(x)=5x−x2
To find the symmetry point of the quadratic function f(x)=5x−x2, we will determine the vertex of the parabola.
Step 1: Express the quadratic function in standard form:
The given function is already in standard form: f(x)=−x2+5x, where a=−1 and b=5.
Step 2: Apply the vertex formula to find the x-coordinate of the vertex:
For the quadratic function ax2+bx+c, the x-coordinate of the vertex is found using x=−2ab.
Step 3: Calculate the x-coordinate:
xamp;=−2×(−1)5amp;=−−25amp;=25
Step 4: Substitute x=25 back into the function to find the y-coordinate:
f(25)amp;=−(25)2+5(25)amp;=−425+225amp;=−425+450amp;=425
Step 5: Determine the symmetry point:
The symmetry point, and thus the vertex of the function, is (25,425), or (221,641).
Therefore, the symmetry point of the function is (221,641).
(221,641)