Determine x for the Quadratic Function y = x² + 16 When f(x) > 0

Given the function:

y=x2+16 y=x^2+16

Determine for which values of x is f(x)>0 f(x) > 0 true

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Given the function:

y=x2+16 y=x^2+16

Determine for which values of x is f(x)>0 f(x) > 0 true

2

Step-by-step solution

To solve the problem of determining for which values of x x the function y=x2+16 y = x^2 + 16 is positive, we proceed as follows:

Step 1: Analyze the function y=x2+16 y = x^2 + 16 .
The expression x2 x^2 is non-negative (i.e., x20 x^2 \geq 0 ) for all real numbers x x . Therefore, the smallest value x2 x^2 can take is 0.

Step 2: Evaluate the function at its minimum value.
Substituting the minimum value of x2 x^2 into the function gives us:

y=x2+16=0+16=16 y = x^2 + 16 = 0 + 16 = 16 .

Step 3: Determine for which x x the function is positive.
Since the minimum value of the function is 16, which is greater than 0, the function y=x2+16 y = x^2 + 16 is greater than 0 for all real numbers x x .

Thus, the solution to the problem is that the function is positive for all x x .

3

Final Answer

All x

Practice Quiz

Test your knowledge with interactive questions

The graph of the function below intersects the X-axis at points A and B.

The vertex of the parabola is marked at point C.

Find all values of \( x \) where \( f\left(x\right) > 0 \).

AAABBBCCCX

🌟 Unlock Your Math Potential

Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations