Solve for Positive Values of x in: y = -x² + 49 > 0

Question

Given the function:

y=x2+49 y=-x^{2}+49

Determine for which values of x the following is true: f\left(x\right) > 0

Step-by-Step Solution

To determine for which values of x x the function f(x)=x2+49 f(x) = -x^2 + 49 is positive, we solve the inequality:

x2+49>0 -x^2 + 49 > 0

We start by finding the roots of the associated quadratic equation:

x2+49=0 -x^2 + 49 = 0

This can be rewritten as:

x2=49 x^2 = 49

Solving for x x , we have:

x=±7 x = \pm 7

The roots are x=7 x = 7 and x=7 x = -7 . These points are where the parabola intersects the x-axis. Since the parabola opens downwards (as the coefficient of x2 x^2 is negative), the function is positive between the roots.

Therefore, the function f(x)>0 f(x) > 0 over the interval:

7<x<7 -7 < x < 7

Thus, the correct choice is:

7<x<7 -7 < x < 7

Answer

-7 < x < 7