The following function is graphed below:
y=−x2+5x+6
For which values of x is
f(x)>0 true?
To solve the problem of finding when f(x)=−x2+5x+6>0, follow these steps:
Step 1: Find the roots of the quadratic equation −x2+5x+6=0. Use the quadratic formula:
x=2a−b±b2−4ac
where a=−1, b=5, and c=6.
Step 2: Calculate the discriminant:
b2−4ac=52−4(−1)(6)=25+24=49
Step 3: Solve for x:
x=−2−5±49
Step 4: Simplify the roots:
x=−2−5±7
This gives the solutions:
x=−2−5+7=−1andx=−2−5−7=6
Step 5: Evaluate intervals defined by these roots: (−∞,−1), (−1,6), and (6,∞).
Step 6: Test a sample point in each interval to check where f(x)>0:
- For interval (−∞,−1), choose x=−2. f(−2)=−(−2)2+5(−2)+6=−4−10+6=−8 (negative)
- For interval (−1,6), choose x=0. f(0)=−(0)2+5(0)+6=6 (positive)
- For interval (6,∞), choose x=7. f(7)=−(7)2+5(7)+6=−49+35+6=−8 (negative)
Step 7: Conclude that the function is positive in the interval: −1<x<6.
Therefore, the solution is −1<x<6.