Find Intervals of Increase and Decrease: y = -1/6x² + 11/3x

Find the intervals of increase and decrease of the function:

y=16x2+323x y=-\frac{1}{6}x^2+3\frac{2}{3}x

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Find the intervals of increase and decrease of the function:

y=16x2+323x y=-\frac{1}{6}x^2+3\frac{2}{3}x

2

Step-by-step solution

To determine the intervals of increase and decrease for the quadratic function y=16x2+323x y = -\frac{1}{6}x^2 + 3\frac{2}{3}x , follow these steps:

  • Step 1: Find the derivative of the function:

The function is given by y=16x2+113x y = -\frac{1}{6}x^2 + \frac{11}{3}x .
The derivative, using power rules, is dydx=13x+113 \frac{dy}{dx} = -\frac{1}{3}x + \frac{11}{3} .

  • Step 2: Set the derivative equal to zero and solve for x x (Critical points):

Set 13x+113=0 -\frac{1}{3}x + \frac{11}{3} = 0 .
Solving for x x , we get 13x=113 \frac{1}{3}x = \frac{11}{3} ,
Thus, x=11 x = 11 .

  • Step 3: Determine the intervals by testing values around the critical point:

For x<11 x < 11 , choose any point like x=0 x = 0 :
dydx=13(0)+113=113>0 \frac{dy}{dx} = -\frac{1}{3}(0) + \frac{11}{3} = \frac{11}{3} > 0 . So, the function is increasing on x<11 x < 11 .
For x>11 x > 11 , choose any point like x=12 x = 12 :
dydx=13(12)+113=4+113=13<0 \frac{dy}{dx} = -\frac{1}{3}(12) + \frac{11}{3} = -4 + \frac{11}{3} = -\frac{1}{3} < 0 . So, the function is decreasing on x>11 x > 11 .

Thus, the function is increasing on the interval (,11) (-\infty, 11) and decreasing on the interval (11,) (11, \infty) .

Therefore, the intervals of increase and decrease for the function are:
\nearrow for x<11 x < 11 ; \searrow for x>11 x > 11 .

3

Final Answer

 :x>11   :x<11 \searrow~:x>11~~\\ \nearrow~:x<11

Practice Quiz

Test your knowledge with interactive questions

Note that the graph of the function shown below does not intersect the x-axis

The parabola's vertex is A

Identify the interval where the function is decreasing:

XXXAAA

🌟 Unlock Your Math Potential

Get unlimited access to all 18 The Quadratic Function questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations