Insert the corresponding expression:
We have hundreds of course questions with personalized recommendations + Account 100% premium
Insert the corresponding expression:
To solve this problem, we will simplify the expression by following these steps:
Now, let's work through each of these steps:
Step 1: We are given the compound expression . The base here is , the first exponent is 4, and the second exponent is .
Step 2: Using the formula for a power of a power, we have . Substitute the values: is being raised to .
Step 3: Simplify the expression: We then multiply the exponents to get .
Thus, the expression simplifies to .
Reviewing the given choices:
Therefore, the correct choice is choice 3: .
\( 112^0=\text{?} \)
The power of a power rule says . Think of it this way: means , which gives us , not !
They give completely different results! If x=2: versus . The first is much larger because we're multiplying exponents, not adding them.
Absolutely! You can write the answer as either or . Both are correct, but the question asks for the form with .
Use this memory trick: Same base with multiplication → add exponents: . Power of a power → multiply exponents: .
The rule still works perfectly! For example, if x = 1/2, then . The power of a power rule applies to any real number exponent.
Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime