Solve Mixed Number Multiplication: 2⅚ × 1¼

Mixed Number Multiplication with Improper Conversion

256×114= 2\frac{5}{6}\times1\frac{1}{4}=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations
00:00 Solve
00:04 Now let's convert mixed fractions to fractions
00:35 Make sure to multiply numerator by numerator and denominator by denominator
00:48 Now let's convert to a mixed fraction
00:53 Let's break down 85 into 72 plus 13
00:57 Let's break down the fraction into whole number and remainder
01:04 Convert whole fraction to whole number, and combine with mixed number
01:13 And this is the solution to the question

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

256×114= 2\frac{5}{6}\times1\frac{1}{4}=

2

Step-by-step solution

To solve the problem of multiplying the mixed numbers 2562\frac{5}{6} and 1141\frac{1}{4}, we will follow these steps:

  • Step 1: Convert mixed numbers to improper fractions.

For 2562\frac{5}{6}:
Multiply the whole number 2 by the denominator 6, resulting in 12. Add the numerator 5 to get 17.
Thus, 256=1762\frac{5}{6} = \frac{17}{6}.

For 1141\frac{1}{4}:
Multiply the whole number 1 by the denominator 4, resulting in 4. Add the numerator 1 to get 5.
Thus, 114=541\frac{1}{4} = \frac{5}{4}.

  • Step 2: Multiply the improper fractions.

Multiply 176\frac{17}{6} by 54\frac{5}{4}:
The result is 17×56×4=8524\frac{17 \times 5}{6 \times 4} = \frac{85}{24}.

  • Step 3: Convert the result back to a mixed number.

To convert 8524\frac{85}{24} to a mixed number, divide 85 by 24:
85 divided by 24 is 3, with a remainder of 13.
Hence, 8524=31324\frac{85}{24} = 3\frac{13}{24}.

Therefore, the product of the mixed numbers 2562\frac{5}{6} and 1141\frac{1}{4} is 31324 3\frac{13}{24} .

3

Final Answer

31324 3\frac{13}{24}

Key Points to Remember

Essential concepts to master this topic
  • Conversion Rule: Convert mixed numbers to improper fractions before multiplying
  • Technique: For 256 2\frac{5}{6} , calculate (2×6)+5 = 17, giving 176 \frac{17}{6}
  • Check: Convert final answer back: 8524 \frac{85}{24} ÷ 24 = 3 remainder 13 = 31324 3\frac{13}{24}

Common Mistakes

Avoid these frequent errors
  • Multiplying whole numbers and fractions separately
    Don't multiply 2×1=2 and 56×14=524 \frac{5}{6}×\frac{1}{4} = \frac{5}{24} then add = 2524 2\frac{5}{24} ! This ignores cross-multiplication between whole and fractional parts. Always convert to improper fractions first, then multiply as single fractions.

Practice Quiz

Test your knowledge with interactive questions

\( 2\frac{5}{6}\times1\frac{1}{4}= \)

FAQ

Everything you need to know about this question

Why can't I just multiply the whole numbers and fractions separately?

+

Because mixed numbers represent one complete value, not separate parts. When you multiply 256 2\frac{5}{6} by 114 1\frac{1}{4} , every part must interact with every other part through proper multiplication.

How do I remember the formula for converting mixed numbers?

+

Use this simple pattern: (whole × denominator) + numerator. For 256 2\frac{5}{6} , think "2 times 6, plus 5" = 17. The denominator stays the same!

What if my final fraction can be simplified?

+

Always check if you can reduce your answer! Find the greatest common factor of numerator and denominator. In this case, 1324 \frac{13}{24} cannot be simplified further since 13 and 24 share no common factors.

Is there a quicker way to do this problem?

+

Some students try shortcuts, but converting to improper fractions first is actually the most reliable method. It prevents errors and works for all mixed number multiplication problems.

How do I convert the improper fraction back to a mixed number?

+

Divide the numerator by the denominator: 85÷24=3 85 ÷ 24 = 3 remainder 13 13 . The quotient becomes the whole number, remainder becomes the new numerator: 31324 3\frac{13}{24} .

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Mixed Fractions questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations