Given the function:
Determine for which values of x the following holds:
f\left(x\right) < 0
Given the function:
Determine for which values of x the following holds:
f\left(x\right) < 0
Given the quadratic function , we want to determine when .
First, observe that the function is a downward-opening parabola because the coefficient of is negative (). This means the parabola opens downwards.
To find when the parabola is below the x-axis (), we should first check whether there are any real roots, since this implies crossing the x-axis.
The function is reformulated as:
.
To find the roots, rearrange and solve:
or .
Since yields no real solutions (as no real number squared equals a negative), there are no x-intercepts.
This indicates the parabola does not cross the x-axis and is entirely below it (since it opens downward and has no real roots).
Thus, the function for all real values of .
Therefore, the condition is satisfied for all x, meaning the correct choice is:
All x
.All x