Solve the Cubic Equation: 12x³-9x²-3x = 0

Question

Find the value of the parameter x.

12x39x23x=0 12x^3-9x^2-3x=0

Video Solution

Step-by-Step Solution

To solve the problem, we follow these steps:

  • Step 1: Identify the given cubic equation, 12x39x23x=0 12x^3 - 9x^2 - 3x = 0 .
  • Step 2: Look for common factors in the terms of the equation.
  • Step 3: Apply the zero-product property to factor and solve the equation.

Let's work through the solution:

Step 1: Observe that each term in the equation 12x39x23x 12x^3 - 9x^2 - 3x has a common factor of 3x 3x . So, we can factor 3x 3x out of the equation, giving us:

3x(4x23x1)=0 3x (4x^2 - 3x - 1) = 0

Step 2: Having factored out 3x 3x , we now have a product of terms equaling zero. According to the zero-product property, at least one of the factors must be zero:

3x=0or4x23x1=0 3x = 0 \quad \text{or} \quad 4x^2 - 3x - 1 = 0

This gives us one solution directly:

x=0 x = 0

Step 3: Solve the quadratic equation 4x23x1=0 4x^2 - 3x - 1 = 0 using the quadratic formula, where a=4 a = 4 , b=3 b = -3 , and c=1 c = -1 :

The quadratic formula is:

x=b±b24ac2a x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a}

Applying it to our equation:

x=(3)±(3)244(1)24 x = \frac{{-(-3) \pm \sqrt{{(-3)^2 - 4 \cdot 4 \cdot (-1)}}}}{2 \cdot 4}

x=3±9+168 x = \frac{{3 \pm \sqrt{{9 + 16}}}}{8}

x=3±258 x = \frac{{3 \pm \sqrt{25}}}{8}

x=3±58 x = \frac{{3 \pm 5}}{8}

This gives us two solutions:

When 25=5 \sqrt{25} = 5 , x=3+58=1 x = \frac{{3 + 5}}{8} = 1 .

When 25=5 \sqrt{25} = -5 , x=358=14 x = \frac{{3 - 5}}{8} = -\frac{1}{4} .

Therefore, the solutions to the equation 12x39x23x=0 12x^3 - 9x^2 - 3x = 0 are x=0 x = 0 , x=1 x = 1 , and x=14 x = -\frac{1}{4} .

Verifying against the provided choices, the correct choice is choice 2: x=0,x=1,x=14 x=0,x=1,x=-\frac{1}{4} .

Answer

x=0,x=1,x=14 x=0,x=1,x=-\frac{1}{4}