Find the value of the parameter x.
−2x(3−x)+(x−3)2=9
To solve the equation −2x(3−x)+(x−3)2=9, follow these steps:
- Step 1: Expand each term:
−2x(3−x)=−6x+2x2 and (x−3)2=x2−6x+9.
- Step 2: Substitute the expanded terms into the equation:
−6x+2x2+x2−6x+9=9.
- Step 3: Combine like terms:
(2x2+x2)+(−6x−6x)+9=9.
- Step 4: Simplify further:
3x2−12x+9=9.
- Step 5: Move all terms to one side to form a quadratic equation:
3x2−12x+9−9=0.
- Step 6: Simplify the expression:
3x2−12x=0.
- Step 7: Factor out the common term:
3x(x−4)=0.
- Step 8: Solve for x:
Since 3x=0 or x−4=0, we find x=0 or x=4.
Therefore, the values of x that satisfy the equation are x=0 and x=4.