Solve the Equation: -2x(3-x)+(x-3)² = 9 for Parameter x

Question

Find the value of the parameter x.

2x(3x)+(x3)2=9 -2x(3-x)+(x-3)^2=9

Video Solution

Step-by-Step Solution

To solve the equation 2x(3x)+(x3)2=9-2x(3-x) + (x-3)^2 = 9, follow these steps:

  • Step 1: Expand each term:
    2x(3x)=6x+2x2-2x(3-x) = -6x + 2x^2 and (x3)2=x26x+9(x-3)^2 = x^2 - 6x + 9.
  • Step 2: Substitute the expanded terms into the equation:
    6x+2x2+x26x+9=9-6x + 2x^2 + x^2 - 6x + 9 = 9.
  • Step 3: Combine like terms:
    (2x2+x2)+(6x6x)+9=9(2x^2 + x^2) + (-6x - 6x) + 9 = 9.
  • Step 4: Simplify further:
    3x212x+9=93x^2 - 12x + 9 = 9.
  • Step 5: Move all terms to one side to form a quadratic equation:
    3x212x+99=03x^2 - 12x + 9 - 9 = 0.
  • Step 6: Simplify the expression:
    3x212x=03x^2 - 12x = 0.
  • Step 7: Factor out the common term:
    3x(x4)=03x(x - 4) = 0.
  • Step 8: Solve for x x :
    Since 3x=03x = 0 or x4=0x - 4 = 0, we find x=0x = 0 or x=4x = 4.

Therefore, the values of x x that satisfy the equation are x=0\mathbf{x = 0} and x=4\mathbf{x = 4}.

Answer

x=0,x=4 x=0,x=4