Solve the following equation:
2x2+x−10=0
To solve the quadratic equation 2x2+x−10=0, we'll apply the quadratic formula. The equation is in standard form ax2+bx+c=0, where:
- a=2
- b=1
- c=−10
Now, substitute these values into the quadratic formula:
x=2a−b±b2−4ac
Step 1: Calculate the discriminant:
b2−4ac=12−4×2×(−10)=1+80=81
Step 2: Take the square root of the discriminant:
81=9
Step 3: Solve for x using the quadratic formula:
- x1=4−1+9=48=2
- x2=4−1−9=4−10=−25=−221
The solutions to the equation 2x2+x−10=0 are x1=2 and x2=−221.
Therefore, the correct choice from the provided options is
x1=−221,x2=2
x1=−221,x2=2